supercomputing

?& Vlaanderen

NN

Supercomputers for Sta rters

October 2025 N .' \ | Y
Kurt Lust — CalcUA, VSC and LUMI User Support Team

VLAAMS
SUPERCOMPUTER | innovative Computing ; b
CENTRUM | for A Smarter Flanders vscentrum.be

supercomputing

/
— (& Vlaanderen

S up e rco m p u te rs fo r ‘ft*‘rte rS

Part 1: Introd uctlon \; VS

VLAAMS
SUPERCOMPUTER | innovative Computing ; b
CENTRUM | for A Smarter Flanders vscentrum.be

Goals

> Why would one consider using supercomputers?

> How does supercomputer hardware influence our choice of software and programming techniques?
And does that also affect regular PCs or devices like tablets and smartphones?

> What can (should) we (not) expect from a supercomputer?

I’'m not a programmer, do | need to know all this?

> Yes, because supercomputers are very expensive machines and thus must be used efficiently
o and that depends on the problem you’re trying to solve,
o your choice of software,
o and on the resources that you request when starting a program.

o In fact, if your software cannot exploit the hardware sufficiently well or your problem is too small,
you should use something else.

Goals

> Why would one consider using supercomputers?

> How does supercomputer hardware influence our choice of software and programming techniques?
And does that also affect regular PCs or devices like tablets and smartphones?

> What can (should) we (not) expect from a supercomputer?

I’'m not a programmer, do | need to know all this?

> | prepared this lecture by looking at manuals of some software packages that our users use, including
CP2K, OpenMX, QuantumESPRESSO, Gromacs and SAMtools and checked what those packages use.

o The Gromacs manual even contains a section that tries to explain much of what we see here.

Gromacs manual

Niet veilig — manual.gromacs.org C O re t h re a d
GROMACS 2020 » User guide »

Table Of Contents Getting good performance from mdrun . -
ood perform om
o ; Here we give an overview on the parallelization and acceleration schemes employed by GROMACS. The aim is to provide an understanding of the underlying mechanisms that make GROMA C a C h e t h re a d affl n Ity

sented should help choosing appropriate parallelization options, run configuration, as well as acceleration options to achieve optimal simulation performance.

The GROMACS build system and the gmx mdrun tool have a lot of built-in and configurable intelligence to detect your hardware and make pretty effective use of it. For a lot of casual and serid
get the most from your hardware to maximize your scientific quality, read on! S O C ket O pe n IVI P

Hardware background information

Modern computer hardware is complex and heterogeneous, so we need to discuss a little bit of background information and set up some definitions. Experienced HPC users can skip this sectio n O d e IVI P I

core
Ahardware compute unit that actually executes instructions. There is normally more than one core in a processor, often many more.
cache ra n k
A special kind of memory local to core(s) that is much faster to access than main memory, kind of like the top of a human’s desk, compared to their filing cabinet. There are often several laye
socket
A group of cores that share some kind of locality, such as a shared cache. This makes it more efficient to spread computational work over cores within a socket than over cores in different sc C U D A
node
A group of sockets that share coarser-level locality, such as shared access to the same memory without requiring any network hardware. A normal laptop or desktop computer is a node. A n
request to use.
thread

A stream of instructions for a core to execute. There are many different programming abstractions that create and manage spreading computation over multiple threads, such as OpenMP, p
ware can map more than one software thread to a core; on Intel x86 processors this is called “hyper-threading”, while the more general concept is often called SMT for “simultaneous multi-| v W ¢ ware
core. This feature can usually be enabled or disabled either in the hardware bios or through a setting in the Linux operating system. GROMACS can typically make use of this, for a moderate free perfurmanr:e bcmst In most cases it will be enabled by defauh eg.

on new x86 processors, but in some cases the system administrators might have disabled it. If that is the case, ask if they can re-enable it for you. If you are not sure if it is enabled, check the output of the CPU information in the log file and compare with CPU spe-
cifications you find online.

thread affinity (pinning)

By default, most operating systems allow software threads to migrate between cores (or hardware threads) to help automatically balance workload. However, the performance of gmx mdrun can deteriorate if this is permitted and will degrade dramatically especially
when relying on multi-threading within a rank. To avoid this, gmx mdrun will by default set the affinity of its threads to individual cores/hardware threads, unless the user or software environment has already done so (or not the entire node is used for the run, i.e. the-
re is potential for node sharing). Setting thread affinity is sometimes called thread “pinning”.

MPI
The dominant multi-node parallelization-scheme, which provides a standardized language in which programs can be written that work across more than one node.
rank

In MPI, a rank is the smallest grouping of hardware used in the multi-node parallelization scheme. That grouping can be controlled by the user, and might correspond to a core, a socket, a node, or a group of nodes. The best choice varies with the hardware, soft-
ware and compute task. Sometimes an MPI rank is called an MPI process.

GPU
A graphics processing unit, which is often faster and more efficient than conventional processors for particular kinds of compute workloads. A GPU is always associated with a particular node, and often a particular socket within that node.
OpenMP
A standardized technique supported by many compilers to share a compute workload over multiple cores. Often combined with MPI to achieve hybrid MPI/OpenMP parallelism.
CUDA
A proprietary parallel computing framework and AP| developed by NVIDIA that allows targeting their accelerator hardware. GROMACS uses CUDA for GPU acceleration support with NVIDIA hardware.
OpenCL

An open standard-based parallel computing framework that consists of a C99-based compiler and a programming API for targeting heterogeneous and accelerator hardware. GROMACS uses OpenCL for GPU acceleration on AMD devices (both GPUs and APUs)
and Intel integrated GPUs; NVIDIA hardware is also supported.

SIMD
Atype of CPU instruction by which modern CPU cores can execute multiple floating-point instructions in a single cycle.

Wiarle Aietrihiitinn by narallalizatinan in MROMACK

SAMtools

sort samtools sort [-1 level] [-m maxiMem)] [-o out.bam] [-O format] [-n] [-T tmpprefix] [-@ threads] [in.sam|in.baml|in.cram)

Sort alignments by leftmost ¢/ »rdinates, or by read name when -n is used. An ag’ ropriate @HD-SO sort order header tag will be added or an existing one updated if
necessary.

The sorted output is written t¢ standard output by default, or to the specified/ ile (out.bam) when -0 is used. This command will alsc create temporary files
tmpprefix.%d.bam as needec when the entire alignment data cannot fit intc’ memory (as controlled via the -m option).

Options:
-1 INT Set the desirc d compression level for the final output f e, ranging from 0 (uncompressed) or 1 (fastest but minimal compression) to 9 (best
compression but slowest to write), similarly to gzip(}’ s compression level setting.
If =1 is not us! d, the default compression level will 1pply.
-m INT Approximate y the maximum required memory /.er thread, specified either in bytes or with a K, M, or G suffix. [768 MiB]
-n Sort by read names (i.e., the QNAME< :ld) r/ (her than by chromosomal coordinates. \
-0 FILE Write the fin |l sorted output to FILE/ rathe’ than to standard cutput.

-0 FORMAT Write the fir 1l output as sam, bar 1, or /. ram.

By default, | amtools tries to se'ect 2/iormat based on the -o filename extension,; if output is to standard output or no format can uced, bam is
selected.

-T PREFIX Write temp jrary files to PR -FIX/innn.bam, or if the specified PREFIX is an existing directory, to PREFIX/samtools,
mmm is ur, que to this iny ocat on of the sort command.

.mmm.tmp.nnnn.bam, where

By default! any tempor ary fi' es are written alongside the output file, as out.bam.tmp.nnnn.bam, or if
directory ¢ ; samtoo! s.mn'm.mmm.tmp.nnnn.bam.

ut is to standard output, in the current

-@ INT Set numb r of sor’.ng 71d compression threads. By default, operation is single-threaded.

What is a thread?
How do | choose the number?

VASP

From the VASP online manual and Wiki:

parallelisation (and data distribution) . .
modern multi-core machines.

LINUX cluster linked by Infiniband, .
massively parallel systems

Message Parsing Interface (MPI) 4 openMP threads

OMP_NUM THREADS
1 openMPI processes per socket (workaround)

mpirun -bynode -np 8 -x OMP NUM THREADS=8 vasp

NPAR = ~ v number of cores
NCORE = total number cores / NPAR.

NPAR = number of cores per compute node

Why supercomputing?

> Processing large datasets may require
o more storage capacity than a workstation can deliver,
o more bandwidth (memory or disk) than a regular server can deliver, and
o more processing power than a workstation can deliver.
> Large simulations (e.g., partial differential equations)
o may require (far) more processing power than a workstation can deliver
o and often generate large data sets.
> Parameter analysis or Monte Carlo sampling:
o A workstation may have enough processing power to process a single sample (or a few of them),
o but what if we have 1000s of them?

Supercomputing jobs

Improve turnaround time
Large memory capacity
Capability computing
Hours per job

Improve throughput
Capacity computing
Jobs per hour

Simulation

Computational Fluid Dynamics,
e.g. air flow around windmill

Fluid-structure interactions
Virtual crash test

Simulation of complex molecules
Climate modelling

Data processing

Scientific visualisation of large data
sets or simulation results

Training a big Al model
US postal: Electronic stamp

Parameter study: Simulate a
system for multiple values of the
parameters

Test a range of molecules for some
properties

Risk analysis for banks

Gene sequencing

Data mining / search engines
CERN LHC data processing

Language research: Pre-processing
of a text corpus

What it does not

| have a Turbo Pascal program that runs too slow
on my PC, so | want to run it on the supercomputer.

> Supercomputers only become supercomputers when running supercomputer software.

> All supercomputers nowadays are parallel computers combining sometimes thousands of regular
CPUs to get the job done.

> The efforts to get your problem working on a supercomputer range from relatively minor to
extensive. E.g.,

o Parameter analysis or Monte Carlo sampling requires a relatively minor effort

o Numerically solving a partial differential equation (e.g., fluid flow or mechanical stresses) requires a
major effort but can deliver very good results

> But in many cases, someone else has done the work for you and software is already available.

A supercomputer is a parallel computer

> A supercomputer is not a superscaled PC but a parallel computer in which

[o many processors work together to create a fast system A
= and this is multi-level parallelism Part ”,
[. memory is organised in a hierarchy: from fast buffer memory close to the processor to slow disks
o_many hard disks and/or flash chips combine with the help of software into a powerful qfnmgpart i J
system
> y' -0f- IS | | (Well it is transparent for Part IVJ

correctness but not for performance)
> Hence the need for properly written software!

> PC’s are just getting there (since roughly 2017)
> And tablets and smartphones are there also

o For a while one could even argue that smartphones and tablets are better parallel computers than
the average PC

A layered architecture

r . . . 1
domain-specific

J

these lectures

Middleware

Abstraction of the hardware
MPI message passing, OpenMP, PGAS,

oS

Hardware

Cores, nodes, network, GB memory, distributed
or shared memory, ...

» This is what interests most of us. But...

> System requirements for applications

> Good understanding needed if you want
to program yourself

> Needed when starting a job

> Understand if and how an application
can run (efficiently) on a given system

A layered architecture

> Part VIl discusses what we can expect
from parallel computing

Middleware

Abstraction of the hardware > Part VI discusses popular middleware
MPI message passing, OpenMP, PGAS,

oS

Hardware

Cores, nodes, network, GB memory, distributed
or shared memory, ...

> Part II-V discuss hardware aspects

A compartmentalised supercomputer

Compute section(s)

> Where the actual computations are done

7 Vlaanderen
— () V2andere

S up e rco m p u te rs fo r ‘ft*‘rte rS

Part 2: Processors in SUpercomputers ") x;, o

VLAAMS
SUPERCOMPUTER | innovative Computing ; b
CENTRUM | for A Smarter Flanders vscentrum.be

The CPU: 1 GHz # 1 GHz

GHz does not measure how much work a CPU can do.

» Supercomputers use CPUs derived from those in PCs or smartphones
o But have enhancements for reliability
> These CPUs have gone through a long evolution to do more work per clock cycle:
o More instructions per clock: Instruction-Level Parallelism
o More work per instruction: Vectorization and matrix computing
> But this was not enough, so
o More CPUs (“cores”) that share memory: shared memory parallel computing

o Multiple “nodes” that collaborate by sending messages over a network: distributed memory
parallel computing

A simple computer

> Processor executes simple instructions (e.g., add two
numbers)

Processor > Memory stores the data in a linear structure
> A clock governs everything

> Processor is currently 1 chip (or a small part of a chip), but
long ago this could consist of multiple chips (even 1000s of
chips)

Cray 1 (1976):

> Processor: 20,000 chips

> Memory: 73,728 chips,

> Mean time between failure = 50h

A simple computer — A look inside

Control unit > ALU: Arithmetic and logical unit, does the actual

Other computations
. Reg. AGU logic > Registers: Fast memory cells where ALU instructions fetch
their data and write their results

» AGU & memory controller: To connect to the memory
» Control unit: Coordinates the work

Executing instructions

Time

fetch/decode

get operands

execute

write result

fetch/decode

get operands

execute

write result

fetch/decode

get operands

execute

write result

> Instructions execute one after another
» But instruction execution consists of multiple phases

» One step/phase per clock tick: 0.25 instructions per clock in this
example

» But note: Different phases use different logic on the chip

Instruction-level parallelism: Pipelining

Time

F/D
GO F/D
EX GO F/D
WR EX GO
WR EX
WR

> Different phases use different logic on the chip
o So can we create overlap in the processing of instructions?
> Pipelining: Compare to a car assembly line
> In this simple model: Ideally 1 instruction per clock, 4 times faster

o But this requires that the next instruction doesn’t need the result of
the previous one

> Instruction-Level Parallelism: The CPU is working on multiple
instructions simultaneously

» Supercomputers: IBM System/360 Model 91 (1964), CDC7600 (1967)
> Used in PC CPUs since the mid '80s:i386 (1985) and i486 (1989)

Instruction-level parallelism: Superscalar execution

Time

F/D F/D

GO GO F/D F/D

EX EX GO GO

WR WR EX EX
WR WR

» Now we could increase the number of ALUs and AGUs on the
processor

= Start multiple instructions simultaneously
» Superscalar execution, also a form of ILP

» Potential for >1 instruction/clock and specialised ALUs

» Supercomputers: IBM System/360 Model 91 (1964), CDC6600
(1964 - before pipelining!)

» PCtechnology: 90’s, Pentium (1993) and Pentium Pro (1995)
= And has evolved with hardware reordering of instructions

» Exploitation of ILP is largely done by the compiler and CPU hardware

» But whether a compiler can exploit ILP also depends on the program itself.

Frequent testing tends to kill ILP

Data parallelism through vector computing

> Pipelined and superscalar execution: complicated logic and hence a lot of power
o But a common case that is well suited for superscalar execution is working with vectors

> So designing CPUs with vector instructions (“wider ALUs”) can boost speed without the full power
requirements of a superscalar processor.

o An example of Single Instruction stream, Multiple Data stream (SIMD) architecture
> Popular in supercomputers in the 70s-80s, but then almost disappeared.
o CDC STAR-100 (1974), Cray-1 (1976, first with vector registers)
o NEC still makes vector computers (architecture: 256-wide DP, 32-wide DP execution x 8 steps)
» However, now returning in general-purpose computers (but shorter vector length)!
o MMX (1996) / SSE (1999) / AVX (2011) instructions in x86 processors (but only short vectors)
o AVX-512/AVX-10 in (defunct) Xeon Phi for HPC, Skylake X and newer (16-wide SP, 8-wide DP)
o NEON in ARM (4-wide SP, 2-wide DP)

o SVE in ARM for Fujitsu supercomputer (architecture: 2048-bit, 32-wide DP, implementation: 512-
bit, 8-wide DP) and in ARM v9 (Samsung S22 and later, NVIDIA Grace CPU, Apple A18/M4)

o AMD GCN and CDNA GPU’s (16-wide SP hardware, 64-wide SP instructions) and RDNA GPU'’s

Data-level parallelism: Other SIMD

Control unit
Other

- - Iogic
Reg AGU Reg AGU

Memory (RAM)

> Many “processors”, but they share the control
unit and must all execute the same instruction
on different data.

> Historical example: Thinking Machines
Connection Machine CM-1 (1983)

» Modern example: NVIDIA GPUs (10-100+
SIM(D)(T) processors on a chip)

> Difficult to program efficiently!

Conclusion:
2 levels of parallelism in the CPU

CPUs can do more work per clock by doing:
> More instructions per clock cycle: Instruction-level parallelism

o Mostly hard work for the CPU control logic and the compiler

o Some work for the application developer

o You can expect a gain from this technology without even recompiling your application
» More work per instruction: Data-level parallelism through SIMD/vectorisation

o Hard work for the compiler

= Most programming languages not very helpful: They don’t offer enough information to the
compiler

o Therefore the compiler is only moderately successful in vectorising the code, so work for the
application developer.

o No gain without recompiling for vector instructions

Symmetric multiprocessing

> Increase performance by using multiple processors

> Multiple independent processors, each working on their
own data elements: MIMD (Multiple Instruction, Multiple
Data)

> All processors equal: symmetric multiprocessing (SMP)

Proc. Proc. Proc. Proc.

> Every processor equal access to all memory: Shared
memory with Uniform Memory Access

> But there is a potential bottleneck: the bus to memory

Symmetric multiprocessing

> Increase performance by using multiple processors

r N
core core core core
1 chip package i
% PP g y

> Evolution of terminology: As multiple “processors” were
integrated on a single die (“chip”), it became unclear
what was the processor:

o Core: The unit on the chip that by itself could execute a
program

o Package: Contains one or more dies with one or more
cores each

o Socket: Often the package is plugged into a socket, OS
uses the term socket

o Processor: Often used for the package

» Shared memory multiprocessing is everywhere:
o PC and smartphone processors
o GPU: Multiple SIMD procs!

Shared-memory multiprocessing
Non-Uniform Memory Access

> Split the memory, but maintain a global address space

» Each (multi-core) chip has some memory attached to it.

> Chips are connected via a special-purpose network (UPI =
=) UltraPath, Infinity Fabric, future: CXL)
> Each core on each chip can still directly reach all memory,

but access to “local” memory faster than to “remote”
memory: NUMA

slower

> Transparent with respect to correctness of programs but not
fully transparent when it comes to performance

Shared-memory multiprocessing
Non-Uniform Memory Access

> Split the memory, but maintain a global address space

> Examples:
- o All current multiple-socket server CPUs, e.g., Intel Xeon or
=) AMD Epyc
o SGI Altix UV / HPE Superdome Flex: up to 64 chips

o AMD EPYC gen 1 (Naples): Up to 4 dies with each 2 memory
controllers and 2 groups of 4 cores, with an interconnect
between the dies.

o Some Intel Xeon CPUs and more recent AMD EPYC CPUs can
also be split logically into two or more clusters on a single die

slower

What does this look like in software?

> Process: Operating system concept.

o Created when you start an app on your phone, click on a .exe-file in Windows or type a command
in Linux.

o Has an amount of memory that other processes cannot access, can have exclusive access to files
etc.

> In the old days (think MS DOS), there was one stream of instructions executed in the context of a
process.

o A single application would not be able to exploit multi-core processors!
> (OS) thread:
o An instruction stream that is executed in a process
o So every thread can see all memory of that process (though there is some thread-private memory)

o Threads can run on different cores, though 1 core can also execute multiple threads by
continuously switching between them.

o But be careful with compute threads in scientific computing applications!

What does this look like in software?

e Activiteitenweergave (Alle processen)
Q0| &%~ w2V Geheugen Energie Schijff Netwerk Q Zoek
Procesnaam % CPU~ CPU-tijd Threads Activeringen... PID Gebruiker

clang 704 9.11 1 0 21585 macports

@ iTunes 28,5 34 2B 36 70 20590 KlLust

| & Google Chrome Helper 23,7 9,58 16 194 20382 KlLust
WindowServer 11,9 54:35,21 5 BY 200 _windowserver

B Activiteitenweergave 10,2 1:21,76 B 1 20058 KlLust

EI Google Chrome 9.4 6:47 68 L14] 106 19790 KlLust
kernel_task 84 5:53:2817 140 3.610 0 root
Google Chrome Helper 4.1 3:39 81 4 1 19793 Klust
bluetoothaudiod 2.5 1,386 2 44 20423 root
coreaudiod 1.3 3:63,67] 1489 188 _coreaudiod

ﬂi Microsoft Outlock 1,2 27:08,85 2B 4 B792 KlLust
mds_stores 1.0 8:15,30 G 20 291 root
sysmond 0.9 1:48,77 3 2 309 root

ﬁ Dropbox 0,7 17:53,08 &g 2 5735 KlLust
Pannla Chrome kalnar N7 7047 10 1 19797 Kl uet
Systeem: 11,13% CPU-BELASTING Threads: 1436
Gebruiker: B8 65% Processen: 315
Inactief: 0,22%

My Mac while compiling some code, playing a YouTube video in
Chrome and some music in iTunes, all at the same time.

Hardware threads

> Different names for similar technologies: Simultaneous Multi-Threading (generic term, IBM POWER,
AMD Zen), Hyper-Threading (Intel), hardware threading (Oracle)

» Often not enough parallelism in a single instruction stream to exploit all resources on a core
o So run multiple instruction streams on a single core

o The core effectively behaves as multiple virtual cores, but those virtual cores compete for the same
resources

> Gain depends on the architecture and the application.
o Intel Xeon or Core i7: the gain of the second thread is often moderate

o On Intel Xeon Phi KNC generation you need to use at least two hardware threads to get the
maximal performance.

> Fairly transparent in software (though not 100% performance transparent)
» Hyperthreading enabled on some node types at the VSC.

Programming shared memory

> Automatic parallelisation is probably even less successful than automatic vectorisation
> So as a programmer, you'll need to work, and there are several approaches:
o See section VI on middleware
> So this implies that your application has to be written to exploit this level of parallelism
o Though it can be easily exploited by running multiple copies of your program with a different data
set, each on a single core
o Even as a user you have to be aware of this as you often need to tell your program how many
threads it should use

Distributed memory

> NUMA also has its scaling limits:
o Hardware: Technological challenges limit scaling
o Software: Operating systems do not scale well enough
o Economical: Large fast networks are expensive

» Solution:

o Take a number of pretty standard computers (called
the “nodes”)

o Link together with a network (“interconnect”)

» Communication over a network by sending and
receiving (application-initiated) messages
o No joint global address space (at least not in
hardware)!

o Evolution to interconnects with limited memory
semantics.

Distributed memory

> No direct access to the memory of another node
o Hence at least 1 process per node
o And software to let those processes communicate by sending messages over the network.

> Harder to program, but far more scalable than shared
memory

> Beowulf cluster hype (1994 on): Let’s build this with
cheap&lousy standard components

> In practice, you need high-quality components and
sometimes dedicated technology for good
performance and high enough reliability

Cheap&lousy - Anecdotes

» 2002, ASCI Q @ Los Alamos National Laboratory: 2048 4-socket nodes, DEC Alpha EV-68
o Initial mean-time-between-crashes of 1 hour due to cosmic ray sensitivity
o After better shielding: MTBC of 6 hours
o Cause: Data path without error correction in DEC Alpha CPU
» 2003, Big Mac @ Virginia Tech: 1,100 PowerMac G5 cluster
o Started crashing before it was completely booted
o Cause: No ECC memory and therefore too sensitive to cosmic rays
> 2009, Jaguar, Cray XT5 system at Oak Ridge National Laboratory

o Then the largest system in the world. 360 TB of memory, 18774 nodes with 2 quad core AMD
processors.

o 350 correctable ECC errors per minute!
o On average an uncorrectable 2-bit error every 24 hours
> See |EEE spectrum article “How to kill a supercomputer: Dirty power, cosmic rays, and bad solder”

http://spectrum.ieee.org/computing/hardware/how-to-kill-a-supercomputer-dirty-power-cosmic-rays-and-bad-solder

Programming distributed memory

> Automatic strategies through the compiler never made it past the research phase
> So very hard work for the programmer
o Though there are computer languages that help

o See section VI on middleware
> So this implies that your application must be written to exploit this level of parallelism

o Though it can be easily exploited by running one or more copies of your program independently on
each node

A modern supercomputer...

A modern supercomputer often uses all these tricks!

> Most modern supercomputers are distributed memory machines, a network of compute nodes and)
some specialised nodes.

("> Each node is a shared memory machine,)
o often of the NUMA type with two or more CPU packages (sockets)

" . where each socket contains a multi-core CPU very similar to the processor in your PC but with more)
cores

o and each core often operates as two (or more) virtual cores through hardware threads.
> Each processor core on such a chip nowadays supports vector instructions
> and has extensive instruction-level parallelism.
> Add a GPU (or other) accelerator and things become even more complicated.

\PC and smartphone Most servers, some supercomputers Almost all supercomputersy

Vaughan (AMD Rome) node

To interconnect

> Vaughan @ UAntwerpen

> Hortense 1 @ UGent (but 16 core
complexes per socket)

> LUMI @ CSC but AMD Milan with 8
complexes of 8 cores per socket in
the CPU section, and new nodes in
Hortense and Vaughan

128 GB 128 GB
memory memory

Vaughan (AMD Rome) node

To interconnect

> Memory controller in 4 quarters,
serves 1 (Vaughan) or 2 CCD
(Hortense, LUMI), so the system even

behaves as a NUMA system at the
socket level.

Fast evolution

1977: Cray 1A (ECMWF) 2007: Apple iPhone

80MHz CPU, 160-250 Mflops 412MHz CPU, 412 Mflops

8 MB RAM 128 MB RAM

2.4GB disk space Up to 8GB permanent storage (flash)

5,500 kg 0.135 kg

115 kW A few Watts

$8.86M S500

MTBF: 50 hours Weeks without reboot, years without repair
Needed a CDC as front-end Comes with a tiny built-in monitor

> A typical PCin 1977 (TRS 80 model 1, Apple Il) had a clock speed of 1-2MHz, no floating point
hardware and because of that only reached on the order of 100-200 flops.

> Unfortunately we’ve come to the end of this fast evolution (see later)...

Fast evolution (2)

1994: KU Leuven SP2 2014: My laptop (MacBook Air)

16 66MHz IBM Power2+ CPUs 1 dual-core Intel CPCU@1.3 GHz

4.25 Gflops DP 41.6 Gflops DP (more with turbo boost)

11/1994: Position 198 in Top500 11/2014: Position 198 is 364 Tflops

11/1995: Position 409 in Top500 11/2015: Position 409 is 391 Tflops
06/2015: Position 500 is 402 Tflops

3 GB RAM 8GB RAM

80GB disk space 256 GB disk space (SSD)

1 ton? Less than 2kg (with power supply)

>10 kW? <45W

1ME€? €1300

Can a PC be faster than a supercomputer today?

YES!

> Because they are optimised for different tasks

» Power consumption of electronics on a chip: Twice the clock speed for a given core architecture
requires far more than twice the power.

> Assume a factor 4:
o Suppose we could run 4 cores at 4 GHz for 100W of power,
o Then we could run 16 cores at 2 GHz for the same 100W of power.

o So if the performance of the cores would be the same per clock tick in both scenarios, the 16-core
configuration is twice as fast for applications that can make effective use of all cores.

o However, if an application cannot use multiple cores efficiently, the 4-core configuration will be
faster.

Can a PC be faster than a supercomputer today?

YES!

> Your desktop PC is optimized to run both moderately parallel applications and serial applications well.
Hence the choice was made to use fewer cores at a higher clock speed.

o For along time, PC’s had very few cores that ran at a very high clock speed.
o This is changing, but very high “turbo boost” frequencies save us for single-threaded applications

> The processors of our clusters however are mostly optimized for applications with a high degree of
parallelism. Hence they have a lot of cores but at a lower clock speed than most desktop PCs.

> So if your software/workflow is not parallel, running it on a supercomputer is a waste of money.

> Supercomputers need appropriate software to function as a supercomputer! In fact, the key point of
supercomputing since the mid ‘80s has been adapting software to be able to use cheaper hardware.

Don’t believe me?

The table is for a pretty old generation of Intel CPUs but one we can still understand.

| Hpcpower budget
| E52623) E52660v3] E5-2637v4| E5-2698vd4 | ES5-269v4
10 4 20 22

Cores 4

Clock 3 GHz 2.6 GHz 3.5 GHz 2.3 GHz 2.3 GHz
Power 105 W 105 W 135 W 135 W 145 W
L3 10 MB 25 MB 15 MB 50 MB 55MB
Memory bandwidth 59 GB/s 68 GB/s 76.8 GB/s 76.8 GB/s 76.8 GB/s
Gflops peak DP/core 48 41.6 56 36.8 36.8
Gflops peak DP 192 416 224 736 810

_J 1 J

X2.16 X3.3 X3.6

Part Il: Lessons learnt

> 4 levels of parallelism in supercomputer, 3 of them also on PCs

> Hardware of a supercomputer is optimized for parallel performance and not for sequential
performance.
o No parallelism = no supercomputing

> Computers (and compilers) have evolved. Hence:
o A 10-year old binary won’t run efficiently and might not run at all.

o Code that remained unmodified for 20 years will not exploit all the parallelism on modern
computers either. In fact, it won’t even be efficient on your PC.
> A supercomputer contains 1000’s of times more parts than a regular PC. Hence it probably won’t be
as reliable, so it is not a good idea to try to run a multi-day job without making sure it stores enough
data to restart an interrupted computation.

Intermezzo: A look at the processor

SUPERCOMPUTER
CENTRUM

CPU die shot

Intel E5 v3 14-18C die (Haswell generation)

Core (18 in total)

L3 cache segment
(18 in total)

= ! - inaawr-.
B t BESEEEEE
annunl;ij-'{- B s BONERES sEy R
— I EREREEN] T SRS 1 |]
e e . e 4 4 :
A 7 'mnnnni &= U susanesans
3 I1 ﬁmnlnu ol '{ L BEBEEEES

-

Connections to the outside world: Memory and PCle slots

Regular PC processor die

HasweII generatlon chip for regular
laptop/desktop, same scale as on
previous slide.

Broadwell generation chip for low-
power laptops, e.g., a 2015 MacBook
Air (1 generation later), same scale.

SUPERC

SMBUTER

.."!

RUM

A CPU package CPU die: invisible, sits

between the heat spreader
and the substrate

heat spreader

2011 pins to connect
to the motherboard capacitors for denoising
power supply

Substrate: routes electric contacts from the chip
to the outside world, and can contain other
components or even multiple chips (dies)

supercomputing

/
— (& Vlaanderen

S up e rco m p u te rs fo r ‘ft*‘rte rS

Part 3: The memory hlera rc;hy - N\

VLAAMS
SUPERCOMPUTER | innovative Computing ; b
CENTRUM | for A Smarter Flanders vscentrum.be

The memory performance gap

> Evolution of computers 1996-2025:
o latency (time to first bit arriving) of memory subsystem:
= 1996: Pentium Pro with PC100 SDRAM: @r 60 clock cycles
= 2025: AMD Turin with DDR5 memory: 120 ns dr 324 clock cycles
o processor chip memory bandwidth
= 1996: Pentium Pro: 64-bit 66 MHz bus]0.52 GB/s
= 2023: AMD Turin: 12 64-bit channels@6Q0# MHz DR:|576 GB/s
o floating point speed (double precisio
= 1996: Pentium Pro, 200 MHz, 0,27Gflop
*(300 ns =60 flops
* 200 Mflops 91.6 GB/s Fesults generaje
= 2025: AMD Epyc 9755: 128C, 2.7GHz: 11,059 Gflops peak DP
°1120 ns=1,327,100 flo
* 11,059 Gflops 4 88,472 GB/{ results generated

The memory performance gap.
Speed-limiting factors

> What limits memory speed?
o larger memory is slower due to physical constraints
= larger size = longer travel distances in the memory device
= and also further away from the CPU so longer distance to the CPU
o and is slower due to economical constraints:
= faster memory cells are more expensive (latency)
= can’t afford the same number of links to off-chip as to on-chip memory (bandwidth)
> On-die memory can be very fast, but is expensive and limited in capacity:
o different type of memory cell that takes more space per bit
o wide paths are possible
» On-package memory: DRAM chips on the substrate

o very wide bus (Apple M1 Max: 512 bit, AMD MI100, NVIDIA V100 and Fujitsu A64fx: 4096 bit,
NVIDIA A100: 5120 bits, NEC SX-Aurora TSUBASA 15t/2" gen: 6144 bits, AMD MI250: 8192 bit)

o but limited capacity

The memory performance gap:
A solution

> To mitigate the memory performance gap problem, small memory “buffers” called cache memory
have been added to the CPU chip:

o most caches are transparent to the programmer with respect to correctness: the system manages
the caches automatically

o but not transparent with respect to performance
= optimize memory access patterns to improve the cache hit rate
> In fact, modern systems have a cache hierarchy with three or four levels

o a small level 1 (L1) cache, e.g., 32 kB, and often specialized for certain “data”: instructions, integer
data, ...

o a larger but slower L2 cache per core, e.g., 256 kB, 512 kB or even 1 MB or 2 MB

o a L3 cache shared by all cores, 2-4 MB/core is not uncommon. E.g., the E5-2699v3: 45 MB cache
(2.5 MB/core), AMD 9755: 512 MB cache (4 MB/core), AMD Genoa-X has 12-48 MB/core

o Intel Sapphire Rapids MAX has 64 GB of HBM memory in the package (but that remains an
experiment for now)

The memory performance gap:
What can we do?

> It is important to organize data access in code in an appropriate way so that data access becomes
local and predictable rather than random. Ideally we stream data through the processor.

o We're not talking about a potential 2x performance increase, but rather 100x or 1000x compared to
a really bad code!

o For linear algebra, FFT, image processing, ..., very good libraries exist, use those and don’t start your
code from scratch!

= Example: BLAS — basic vector and matrix operations and used in many other linear algebra
libraries

* Reference implementation in Fortran sucks on modern systems

* But there are several excellent commercial and free implementations: Intel MKL, AMD Core
Math Library, OpenBLAS, Bliss, Atlas, ...

o Frameworks for other types of applications, e.g., solving PDEs.

> If you use code, it is important to realize that not all code is created equal and big performance
differences do occur.

The memory hierarchy

L3 cache

Leibniz (UA)
“Broadwell”

<1kB/hw thread
~7kB physical

2 x 32 kB/core

256 kB/core

35 MB/socket

128 GB/node
(144)
r21g6sv(\5/§6n0de (8)
600 TB

152 nodes

Vaughan (UA)
AMD “Rome”

<1kB/hw thread
~6kB physical

2 x 32 kB/core

512 kB/core

128 MB/socket
16 MB / 4 cores

256 GB/node

no swap
600 TB
152 nodes

Hawk (HLRS)
AMD “Rome”

<1kB/hw thread
~6kB physical

2 x 32 kB/core

512 kB/core

256 MB/socket
16 MB / 4 cores

256 GB/node

no swap
26 PB
5632 nodes

SUPERCOMPUTER

Vaughan (AMD Rome) node revisited

To interconnect

> L1 and L2 cache is private per core

> L3 cache shared per 4-core core
complex (CCX) or per 8 cores on
LUMI (AMD Milan)

o Fast access to buffer memory of
own CCX, but almost as slow as
main memory access otherwise.

> AMD Rome: 2 CCX per die, share a
link
» Memory controller in 4 quarters,

each quarter serves 2 or 4 CCX
(Rome) or 1 or 2 CCX (Milan)

Combined hierarchy: AMD Rome (Vaughan and Hortense)

hierarchy data transfer data transfer
Iayer delay bandwicth

2 HW threads core L1l, L1D, L2
2 4 cores CCX L3
3 2 CCXs CCD link to 1/O die
4 1(Va)/2 (Ho) NUMA DRAM channel
CCDs node (and PCle lanes)
5 4 NUMA nodes socket inter-socket link
6 2 sockets node inter-node link

Combined hierarchy: AMD Milan (LUMI, Horense extension,
newer Vaughan nodes)

hierarchy data transfer data transfer
Iayer delay bandwicth

2 HW threads core L1l, L1D, L2
2 8 cores CCX L3
Link to I/O die
3 2 CCDs NUMA DRAM channel
node (and PCle lanes)
4 4 NUMA nodes socket inter-socket link
5 2 sockets node inter-node link

7 Vlaanderen
— () V2andere

S up e rco m p u te rs fo r ‘ft*‘rte rS

Part 4: Storing data on supercomputers) N\V=a

VLAAMS
SUPERCOMPUTER | innovative Computing ; b
CENTRUM | for A Smarter Flanders vscentrum.be

Files on a supercomputer

> Just as physics make it impossible to build a single processor core that is 1,000 times or 1,000,000
faster than a regular CPU core, it is not possible to make a hard disk that spins 1,000 times faster and
has a capacity that is 1,000 times more than current hard disks.

> So how do we build a storage system for a supercomputer?
o Same idea as for CPUs: build a large and fast system out of 100s or 1,000s of regular disks
o And use clever software to make this work as if it is one large and very fast disk

o Also used to make fast SSD drives for PCs and smartphones (which is why the 256 GB M2 13”
MacBook Pro has slower storage than the 512 GB one).

> But just as not all programs can take benefit from multiple processors, not all programs can take
benefit of such a disk setup.

o A parallel setup only works when programs access large amounts of data in large files

o And even though the parallelism can increase the bandwidth, the latency is still limited by that of
each device

Problem 1: Disks break

> Drives fail quite often (and flash-based SSDs aren’t much better than hard disks)
o If you have 1,000 drives, you can expect one to fail on average every 50-100 days.
o Losing some data every 50 days is already quite bad...

o But since all disks operate like one giant disk with files spread over multiple disks, you may actually
lose a significant amount of data.

» Solution:

o Use some disks to store enough information to recover lost data on another disk by using error
correcting codes

o Implies using larger “blocks”:

= e.g., 8+2 configuration: “Block” size will be 8 times that of a regular disk, so typically 32 kB
instead of 4 kB

Problem 1: Disks break

» Performance consequences for writing data:
o Whenever writing you need to update data on at least three disks (assuming 8+2 configuration),
o But to be able to do that correctly, you’d have to read more information first to be able to update
the parity/ECC information.
o Unless of course you write a whole 32 kB-chunk at once.

> For reading data you can already benefit from the fact that data is on multiple disks that are read in
parallel

> Similar techniques are also used, e.g., to protect RAM memory in servers and supercomputers or
internally in flash memory drives

Problem 2: File system block size

> A file system organizes files in one or more “blocks”. They are the smallest element a file system can
allocate and manage.

> On a supercomputer that FS block size can be much larger than on a PC
o PC: used to be 512 bytes, but on current file systems often 4 kB.
o On a cluster, the block size is sometimes much larger (depending on the file system), e.g., 128 kB
= Large disks, small block size = too many blocks to manage efficiently.
= Larger “blocks” better fit with RAID (using multiple disks in a clever way to compensate for a failed
disk).
> So a 100-byte file will really occupy 128 kB on file system with 128 kB “blocks” (and a little more since
it also takes space in the file system table.

o Extreme case: User who used 642.5 kB to store what was really 36 bytes of data in his program: 4 FP
numbers and one integer and was not even storing the full precision of the FP number.

> Example: Previous UAntwerpen GPFS file system (now IBM Spectrum Scale), but also the VUB Hydra
service and possibly the next VSC Tier-1 system.

Problem 2: File system block size (2)

> Some systems (BeeGFS, Lustre) have a 2-level hierarchical architecture to deal with that.
o Storage distributed across many object storage targets/servers
o But each object storage target/server is more reasonably sized so can use smaller block sizes
o Hierarchical structure:
= File cut in chunks, Last chunk of a file may have a different size (but a multiple of the block size)
= Each chunk is stored in a number of blocks of a single object storage target
* Chunks of a file on the same object storage target are grouped (in a file)

* Example: chunk size of 1 MB, stored across 2 object targets: First megabyte on first OST, second
on second, third again in the same file on the first server, etc.

o Users may need to help the system to chose the right chunk size and number of object storage
targets used as the optimum depends on characteristics of both storage and file.

o And parameters in file /O libraries should match those used by the file system.
> Both types of file systems sometimes have provisions for dealing with very small files.

Problem 3: Physics and the network

> Supercomputer storage sits much further from the CPU as the local drive on your laptop both
physically and logically

o Your program on your laptop can directly contact the file system of the OS and get the data from
the drive

o Shared networked storage adds layers and hence latency: network file system to network stack to
network stack on the server to network file system server to regular file system and then back.

= Parallel file systems may have a sligthly optimized and shorter route but it remains much longer
than to alocal drive

» Consequences

o Programs that open and close hundreds of small files sequentially in a short time may work slower
than on a PC as your program will be waiting for data all the time

o Unpredictable file access patterns are also to be avoided as any logic to prefetch data and hide the
latency will fail

Problem 4: Metadata

> The directory contains information about each file: name, access rights, some type info, data and
time of creation or last access, ...

o And a directory is also a special kind of file by itself.

o So if you do many small disk accesses or store a lot of files in a directory and access them
simultaneously, you’ll create a bottleneck because a lot of information in the directory needs to be
updated continuously.

> The typical problem scenario: A distributed memory application where each process creates a small
file in the same shared directory to write its data, rather than use parallel file I/O to read/write a
whole bunch of data in one multi-node file system operation.

o Try to do this on a 200k core cluster and you’ll be the system administrator’s best friend for sure.

» And equally stupid: Open a file before every read or write and close it again immediately.

Higher bandwidth through separation of data and metadata

> PC file system and many regular file server file systems:
o Each block on disk can be used for either metadata or data
o Flexible: small file sizes well supported

o But difficult to get very high bandwidth unless very expensive storage technologies are used
because of a single server per file bottleneck

> Supercomputers need a different kind of file system for high performance: a parallel file system

o BeeGFS (UAntwerp storage), Spectrum Scale/GPFS (e.g., VUB, UGent), Lustre (KU Leuven storage;
hortense; LUMI), VDURA, Weka, VAST, ...

o Separate metadata servers

= Still a potential bottleneck in metadata access

= Space determined at purchase, and often on fast and expensive storage
o Data/ object servers for the data

= Once a file is opened, different processes of a parallel job can pump data in parallel to multiple
data/object servers

Higher bandwidth through separation of data and metadata

_ _ Login Compute Compute
E.g., reading a file:

> Client queries MDS for file

» MDS returns location and
layout

» Client uses that information to
know which OSSes to talk to

> Client(s) requests file content
from the OSSes

o Multiple clients can talk to
multiple OSS simultaneously

il
il

=

Metadata server Data/object server Data/object server Data/object server

Higher bandwidth through separation of data and metadata

> However:
o The bandwidth gain at the file level is only for large block read/writes in large files
o And the number of files is also limited by the space on the metadata drives
o Some metadata operations are more expensive
= Certainly true for opening and closing files

= On Lustre, 1s -1 is expensive too as it needs to talk to the object storage servers to compute the
size of a file

> So this storage is not suitable for working with lots of small files or opening and closing files all the
time
o Supercomputer centres are starting to enforcing limits on what users can do on their “fastest”
shared file systems!

A storage revolution?

» Our storage on the cluster is relatively slow
o Sustained joint bandwidth on /scratch on the order of 7-8 GB/s

o Comparison: The fastest SSD in my 9 year old PC at home gets 1.5 GB/s write, 2.5 GB/s read
bandwidth. Modern PC SSDs claim up to 14 GB/s read bandwidth when put in the right system
(very few processors can handle this) and accessed in the right way.

» So why don’t we use 120 big SSD drives rather than 120 hard disks for /scratch?

o Don’t expect 120 times 14 GB/s from such a setup unless you’re prepared to buy more storage
servers as the bandwidth a single server can deliver is limited

o Don’t expect 120 times 14 GB/s from such a setup unless you have proper file access patterns as
many problems persist even with SSD storage

o Moreover, there are two major problems with the SSD drives themselves...

Flash drives (January 2025)

Seagate Seagate Seagate Samsung Samsung Samsung
Exos X20 Nytro 3750 Nytro 3350 990 Pro 970 EVO Plus | 870 QVO

Technology

Market

Capacity
Read speed
Write speed
Latency
Endurance
DWPD

Data
written/day

Price

Spinning
magnetic disks

datacenter
(SAS)

20TB
0.28 GB/s
0.28 GB/s
4,16 ms

0.020-0.05 €/GB

3D eTLC
NAND flash

datacenter
(SAS 3.0)

3.27TB

58.4 PB
10

32 TB/day
4h2m

0,82 €/GB

3D eTLC
NAND flash

datacenter
(SAS 3.0)

15.36TB

28 PB
1

15.3 TB/day
3h51m

0,33 €/GB

TLC V-NAND
flash

prosumer
(NVMe)

4TB

7.45 GB/s
6.9 GB/s
50 ps ??7?
2.4 PB
0,33

1.32 TB/day
2m57s

0.075 €/GB

TLC V-NAND
flash

consumer
(NVMe)

2TB

1.2 PB
0.33

0.66 TB/day
3m20s

0.085 €/GB

QLC V-NAND
flash

consumer
(SATA)

8 TB
0.56 GB/s
0.53 GB/s
100 ps ???
2.88 PB

0.2 (@5 year)

1.5 TB/day
50m

0.062 €/GB

Is flash a storage revolution?

> Flash memory has
o A durability issue

= Current cheaper high-capacity flash chips can only handle 150-500 writes of every block of cells
(and the better ones maybe around 1000 writes)

o and a price issue: 10x regular hard disks in a cluster setup if you want good endurance

= the price does not improve anymore. Several drives on the table are now even more expensive
than one year ago.

» Unpredictable slow-down under random small write load when the drive starts to fill up

o Hard disks have a fragmentation problem that may reduce read and write speed, but contrary to
popular belief, flash-based SSDs are not at all better when it comes to such write operations.

Is flash a storage revolution? (2)

> At some point there was hope for better permanent memory technologies with much better write
endurance and better access properties than flash (byte-addressable as regular memory instead of
block-addressable) but development has stopped due to economic constraints

o 3D XPoint (Intel, Micron)
o memristor (HP, SanDisk)

> It looks like large database systems will be better served by RAM-on-CXL (big chunks of RAM but
connected through a longer distance connection with higher latency and lower bandwidth), and
battery backup.

o But I have doubts despite the claims of some vendors who talk about composable hardware that
this is a technology for HPC as our users have now already problems dealing with latency and
NUMA characteristics of memory

File system: To remember...

> Supercomputers like large files and large reads or writes. Just as with memory, streaming data to and
from a file is much faster than random access.
> Avoid writing many small files

o Running 1000s of small jobs, e.g., for a parameter study: Don’t keep many small files per run until
the post-processing phase, but accumulate the data right away in a large file

o And there are technologies to help with that, e.g., databases (e.g., SQLite3) and HDF5 files

> Avoid opening and closing files all the time as this involves additional metadata operations

» Use MPI-2 parallel I/O or libraries such as HDF5, netCDF, ADIOS or SIONIib (or look for codes that use
them) when working with large amounts of data

o Think of it as creating a hierarchy: the file can act as a kind of file system for the data that belongs
together.

> Avoid writing large text files. Binary files are as portable as text files nowadays, are more compact
and if one knows the data structures written to it, one can easily compute where in the file what data
should be, and reading and writing is a 100 times or more faster

File system: To remember... (2)

> Scaling capacity is cheap
o Often one only needs to add disk enclosures and disks, not so much servers, as there are drive
interfaces that scale to a very high number of disks (like SAS).
» Scaling bandwidth is harder and more expensive
o Adding disks is not enough, we need to add file servers too as each server has a finite bandwidth

o But a single application can only benefit if it exploits parallel /0.

» Scaling |/O Operations (IOPS) is the most expensive
o Metadata access is much harder to parallelize, especially for access by a single user or to a single
directory
o Higher latency compared to an SSD in a PC because of additional layers of software and network
access limit sequential IOPS
o Higher total IOPS does not mean higher IOPS for a single threaded application with synchronous
file access!

2020 UAntwerp storage system

> Linux home directory is on flash storage but have a very small capacity allocation to users which helps
prevent abuse (roughly 3.5 TB)

> Disk volumes that are only written to by system managers are on flash storage: roughly 18 TB
o Mainly for applications
> Regular file system on hard drives (roughly 50 TB)
o Space for more permanent data and some special use cases
> A large parallel file system (BeeGFS) on hard drives (roughly 0.7 PB)
o 120 hard drives for the object storage
o SSD for the metadata

o Optimized for larger files and bigger writes. We do note that some metadata operations are
relatively expensive on this file system.

supercomputing

?& Vlaanderen

NN

Supercomputers for Sta rters

February 2025 .' \ | Ny
Kurt Lust — CalcUA, VSC and LUMI User Support Team

VLAAMS
SUPERCOMPUTER | innovative Computing ; b
CENTRUM | for A Smarter Flanders vscentrum.be

?& Vlaanderen

supercomputing

.'-'_"!_-, v - — _‘.. — - I
\"-

Supercomputers for Sta rters

Part 5: Putting it all together (summary sesslon 1)

VLAAMS
SUPERCOMPUTER | innovative Computing ; b
CENTRUM | for A Smarter Flanders vscentrum.be

High-Performance Computing
-

High-end Personal Computer

SUPERCOMPUTER
CENTRLIM

Scaling

» Performance of hardware parts of computers is characterised by many parameters
o Clock speed of a CPU
o Latency of connections and various subsystems (e.g., memory and disks)
o Bandwidth of various elements, compute capacity
o Power consumption of parts
> Not all these parameters are as cheap to scale or improve over time at the same rate
o Physical limitations have put a bound to improvements in CPU clock speed and latencies
o Speed of light and speed of signals in copper wires is finite

o Bandwidth growth of memory, disks and network connections tends to be slower than the growth
of quoted peak performance of a computer system

> As a result it is not possible to build a computer where all those parameters are 100x better than in a
PC or smartphone

o For some work a High-end PC is unbeatable because of its compact size and thin software layers as
it is a personal device

Dennard scaling

> For a long time, with every new generation of chip technology
o Linear dimensions decreased by 30%
o Surface dimensions decreased by 50%, i.e., transistor density doubled
o Power density remained the same (as voltage and currents are proportional to linear dimension)
o Circuit delays went down by 30%, so frequencies went up by 40%
> This broke down around 2006 though

o Not all dimensions of all elements scale as well, so transistor density does not grow as fast
anymore

o Threshold voltage of semiconductors becomes relevant
o Leakage power becomes dominant
o Clock frequencies don’t go up as fast anymore

Dennard scaling (2)

> As a result of the breakdown of Dennard scaling
o Chips have become very hot and power consumption of supercomputers a major concern
o Hardly any further speed increases just from further reducing component size
= So need to look harder for architectural improvements than before
o Part of the reason why latencies of various components do not improve anymore
> Transferring data at high speeds also requires considerable power

o Nowadays transfering two numbers from one end to the other end of a chip requires more power
than a computation with those numbers

> PCs already operate in the domain of Dennard scaling breakdown, so no hope for a single processor
that is much faster than that in a PC...

Cost per transistor

> Data from the Marvell 2020 Investor Day:

Cost per 100M gates
$5,00
$4,01

$4,00
$1,94
$2,00 §130 $142 $143 5145 $1,52
$0,00
90nm 65nm 45/50nm 28nm 20nm 16/14nm 10nm
> Processors still become faster, but price/performance of computers isn’t improving as much anymore
> Need to find ways to do more work per transistor

o So more architectural innovations needed...
> Or use better software to get more out of our hardware budget

Keywords: Parallelism, hierarchy and streaming

> There are three keywords when developing software to obtain high performance
o And today those three keywords are relevant even for PCs

> Parallelism:

©)

Processor performance relies on parallelism through instruction level parallelism and vector/matrix
computing

System level processing performance relies on parallelism through the use of multiple processors in
shared memory and distributed memory setup

Memory performance in fact also relies on parallelism in memory accesses. A single core cannot
saturate the memory bandwidth of a modern system (not even on a PC)

Storage performance relies on parallelism
= Multiple devices accessed simultaneously to reach high bandwidth (RAID, parallel filesystem)

= Processing multiple I/O requests simultaneously (and this is even more important for flash
memory than for hard disks)

And this is not a new lesson
= Supercomputers have employed parallelism that needs programmer help since the ‘70s.
= PC’s: Vector computing since the mid ‘90s, multicore since 2006

Keywords: Parallelism, hierarchy and streaming (2)

> Hierarchy:
o Memory hierarchy: (typically) 3 levels of cache, then two or more levels of RAM memory
= AMD CPUs have an even more pronounced hierarchical structure than Intel CPUs
o Hierarchy in parallelism in processing:
= |LP and vectorisation at a very fine scale
= Shared memory parallelism
= Distributed memory parallelism

o Not yet discussed: GPUs also have a very hierarchical structure, both in hardware and low-level
programming models

o Expect storage to also become more hierarchical than it is today
= And storage formats such as netCDF, HDF5, ADIOS, ..., already create a hierarchy

o Exploiting the hierarchy is important, as is a proper mapping of the parallelism hierarchy onto the
memory hierarchy

o And this is not a new lesson either. E.g., caches became an issue 40 years ago.

Keywords: Parallelism, hierarchy and streaming (3)

> Streaming:

o Getting data flowing smoothly through the memory hierarchy, all the way from permanent storage
to processing, is key to performance

o Data access should be in sufficiently large chunks
= so that effective bandwidth is not reduced too much by latency and
= so that no data in caches is wasted
o Data accesses should be predictable so that prefetching can work to further hide latency
o So random access to small blocks of data and to lots of small files is the worst thing you can do
o This is not a new message etiher, some level of streaming has been important since the ‘70s...

Andy and Bill’s law

What Andy giveth, Bill taketh away

» Context
o Andy Grove: CEO and later chairman of Intel, 1987-2004
o Bill Gates: CEO and chairman of Microsoft, 1975-2000
> In the ‘80s-‘90s the capabilities of microprocessors grew quickly
o Groves frustration was also that Bill Gates was so slow to exploit new features of his CPUs

> In the ‘90s performance of microprocessors grew so fast that efficiency of software became an
afterthought

o The rise of ever more goodlooking GUIs started in that era
o Software bloat with packages of which 90% of the people use only 10% of the features
> The scientific computing world suffers from similar issues...

Andy and Bill’s law (2)

What Andy giveth, Bill taketh away

> Variants for scientific computing:

What Andy giveth, Cleve taketh away

The rise of Matlab

What Andy giveth, James taketh away

Languages that hide how data is treated such as Java

What Andy giveth, Guido taketh away

Python also saw the light of day in the ‘90s though it only became more popular for scientific N
computing around 2005 SUPERCOMPUTER

CENTRLUM

Andy and Bill’s law (3)

What Andy giveth, Bill taketh away

> But we can no longer afford this attitude today:

o We cannot rely on further improvements of sequential speed to be able to solve ever bigger
problems.

o In fact, we can not even any longer rely on a fast increase of parallel performance/dollar.

o Languages that give us sufficient control over data storage and data flows, and where parallelism is
not an add-on, are important for performance.

> Need to go back to the time when everybody paid attention to good algorithms and to a proper
implementation

o In some fields of scientific computing performance improvements have come as much from better
numerical methods as from faster computers...

o Also in the future much performance improvements will have to come from better software.
o Quantum computers and optical computers will not save the world anytime soon

Supercomputing is about software, not hardware

> ‘60s- ‘70s: smaller slower computers and bigger faster computers

> ‘70s-"80s: vector computing: Now programming techniques for supercomputers started to differ from
those for regular (non-vector) computers, but supercomputer hardware was very specialised

> ‘80s- ‘90s: Supercomputers built from variations of standard components to reduce costs, the
software made the supercomputer

> This is more true than ever before
o Supercomputers try to minimize the hardware costs more than ever
o by using cleverly designed software to turn fairly standard hardware in a powerful computer
o within limits of course as a certain level of reliability is needed.

o This again stresses the importance of proper software at all levels (system software and application
software) on supercomputers!

Supercomputing is about software, not hardware (2)

» Supercomputers focus on different aspects than cloud infrastructures

@)

Focus on latency and staying close to “bare metal” rather then isolation, security and personal
environment

Focus on those aspects of scalability that enable capability computing rather than fine grained user
control and management

Focus even more on hardware cost reduction than cloud infrastructures

Different exploitation model focussing on shared storage, on freeing resources for other users as
soon as possible rather than long-term reservations for a particular user, and on starting the next
task as fast as possible

= Though this is also partly caused because supercomputer resources are often allocated “for free”
after a competition so there is no incentive for a user to think economically

Assembling the cluster: Access and admin part

» UA cluster Vaughan
> Really nothing special, just regular servers

Admin nodes

Login nodes

Assemblmg the cIuster Storage

File servers for NFS »> Standard server

Various types of disks » High-quality storage very
popular in IT services

> Juser, /apps, /data

Disks for scratch space » Cheap array of 60 disks

File servers for scratch space » Standard server

More disks for scratch space

Assembling the cluster: Compute nodes

[

i 3% 7
3 e
T £9
1 = : iy
'\ R 24
! ¥ ¥ \
|y '
e g
& B
;| - -
< |} i &
'di)| 15
- \'. | 2
: I 23 |:

4

» Switch connects to 24 compute
nodes and to “top-level” switches
that in turn connect switches

> 4 compute nodes in the space of 1
server for storage or login nodes

» Groups of 24 compute nodes

:i
ii ;
I

Older set of 24 1 » See next slide for the node
dcompute nodesi

Assembling the cluster: An (older) cluster node

hard disk for local storage

CPU + (passive) cooler

memory DIMM

interconnect

: * A
HE======"] ﬁ‘i it

?'— ST 1| LT At

Besed

The complete cluster

> Older picture of the first VSC Tier-1

cluster, but it better shows the
structure

24 com pq}g nodevmg._

Avraabseibe

--
- -
-
<.
--
c-
-
-
-

P

P ETreTeT “ o

TR I LI
b@..\tl ._i;l

' cooler

e

Ao o
e

The complete cluster (2)

coolers

A real supercomputer: Cray EX (LUMI)

> Switches
o 2 network ports/blade

Cooling manifolds

Sr‘]” i’rc_h Switch
& ass[s blades

o 48 ports facing outside
» LUMI-C: CPU nodes

o 4 nodes/compute blade

o 2 CPUs/node

o 1 network port/node

Compute
chassis P

Compute

o 2 switch blades/chassis
» LUMI-G: GPU nodes

o 2 nodes/compute blade

o 1 CPU & 4 GPUs/node

o 4 network ports/node

Cooling
manifolds

Rectifiers

o 4 switch blades/chassis
o 5 kW per blade, >300 kW per cabinet

distribution
unit

A real supercomputer: Cray EX (LUMI)

CPU node blade GPU node blade

2 Slingshot-11 NICS

A real supercomputer: Cray EX (LUMI)

L]

44 w9

4 8 -
.. .=

.
s
2

* & o~ &

S 2
5

18 Switch 7 | Al - Switch 7

 swicns

=

-1

Switch 0 o2 | Switch 0 |

HPE Cray EX compute blade with single injection port per node HPE Cray EX compute blade with dual injection port per node

A real supercomputer: Cray EX (LUMI)

Comparison: Cray-2

> Cray-2 bought by the University of Stuttgart in 1986

> One of the fastest machines in the world when installed, and
still managed to appear at place 250 in the first Top-500 list
(June 1993), though the fastest machine in that list was 40
times faster

» Roughly 240,000 chips of which 75,000 memory, spread over
750 packages

» Power consumption close to 200 kW = <2x CalcUA

» Power consumption less than 1% of the current fastest
system (El Capitan: about 30 MW)

> Special immersion cooling system

» Cost on the order of 40-50MS in 2023 dollars, just under 10%
of today’s exascale computers

?& Vlaanderen

supercomputing

.'-'_"!_-, v - — _‘.. — - I
\"-

Supercomputers for Sta rters

Part 6: Middleware: Turnlng the hardware mto a usable SUpercomputer

VLAAMS
SUPERCOMPUTER | innovative Computing ; b
CENTRUM | for A Smarter Flanders vscentrum.be

Why?

> In this section we focus on the software development paradigms

I’'m not a programmer, should | know this?

> A supercomputer is more than some hardware + Linux

> In fact, there is a lot of additional software to turn the hardware + Linux into a supercomputer
o And much of that is part of the programming environment.

> API (library functions, ...) often standardised, but the ABI (binary interface) is not
o As a result, mixing compilers can be a problem,

o and getting precompiled binaries to run is sometimes impossible if they were compiled for a
different machine

> You have to realise that that software that sits between your application and the hardware
o has to be ABI or APl compatible with your application, and
o has to be compatible with the hardware and OS kernel drivers/extensions,
o and hence that software that comes as binaries can be problematic.

Why?

> In this section we focus on the software development paradigms

I’'m not a programmer, should | know this?

> Many scientific applications come as source code.
o Helps to judge whether the code is ready for modern hardware
o Helps to figure out which components you’ll need on the cluster
> It also affects the way you start programs
o Start through another program (e.g., almost all distributed memory programs)

o May need some environment variables to tune the performance (e.g., shared & sometimes
distributed memory programs)

> And we can no longer do all software installations for you, there is just too much code with low-
guality installation scripts thrown at us.

Shared memory

» Automatic shared memory parallelisation not very successful
» OpenMP compiler directives:

o A compiler directive is a hint placed in the code in such a way that it should be neglected by
compilers that don’t know the pragma

= C: #fpragma
= Fortran: Look like comments (ISOMP)

o Data-parallel (= each thread works on a part of the data) and
task-parallel (= each thread works on a different task)

o Standard since 1997, not vendor-specific, now at version 6.0 (since November 2024)

o OpenMP 4 was a major revision introducing support for vectorisation and for offload to
coprocessors (typically GPU)

o Influence the runtime behaviour (number of threads, mapping on cores) through environment
variables and/or a small set of library calls

o Supported by the two main compilers in use at the VSC (Intel and GCC)
Supported by all compilers on LUMI (GCC, AMD aocc/ROCm, Cray)

Shared memory

» C++: Frameworks such as (Intel) Thread Building Blocks
o Intel TBB is open-sourced and can be used with other compilers also

> Some languages have thread concepts or other concurrent processing concepts built into the
language or its standard runtime library

o Java: But forget about Java for distributed memory systems
o CH: Microsoft environment, not really used on supercomputers

o Go: Language from Google (but not suitable for supercomputers due to its poor memory
management)

o Julia (Matlab/Python alternative with better performance): Threading still evolving
> Use explicit OS threading, especially for task-based parallelism

o Linux supports the POSIX standard in the Pthreads library

o Low-level and cumbersome as you have to do all thread management by hand

Vector computing

» Automatic vectorization in compilers is moderately successful.
> Vendor-specific compiler directives

o Work only with that vendor’s compiler.
» Standard for directives: OpenMP 4.0 (and later versions)

o Many consider OpenMP 4.0 pragmas worse than the vendor-specific ones, but improvements are
being developed.

o Work with any compiler that supports the standard.

o Major criticism: Too much prescriptive instead of descriptive, but 5.0 is a big improvement in this
respect

» Use good libraries for your work (e.g., BLAS, FFTW, image processing, ...)
o See the demo later in this course!

» Using compiler vendor & CPU-specific intrinsics and additional data types in C/C++/Fortran that
translate into vector instructions

o Use with care as you loose portability but could be an option for intensely used kernels.

Distributed memory

> Automatic strategies through the compiler never made it past the research phase
> Explicit communication through messages most successful model

o MPI library is the most successful one

o MPI is standardized (current version: 5.0). This implies that software that compiles with one MPI
library should also compile with any other MPI library adhering to the same version of the standard
(unless it relies on a specific bug).
= And 5.0 introduced a standard ABI

o Many MPI programs skip the shared memory level, using 1 process per hardware thread, but on
modern CPUs it may be more efficient to combine MPI with one of the shared memory
programming technigues (most often OpenMP) — e.g., 1 process per node, socket, NUMA or cache
domain
= Hybrid MPI1/OpenMP applications, e.g., QuantumESPRESSO, Gromacs, VASP

o We support 2 MPI implementations on the UAntwerp clusters (and some vendor-specific ones on
special machines)

= Open MPI, MPICH, MVAPICH, Intel MPI are just implementations of the standard!

Distributed memory

> Some languages have distributed memory concurrent computing built into the language, e.g., Julia
(Matlab/Python alternative), Charm++

> Partitioned Global Address Space (PGAS) programming languages

o Distinguish between local and remote memory but allow to use the latter almost as if it is local
memory

o And it is up to the compiler to translate that in messages for the underlying
hardware/0OS/middleware combination

o Fortran-derived language: Co-array Fortran, now part of Fortran 2008.
Supported in the (classic) Intel compiler

o C99-derived language: UPC (Unified Parallel C), not part of any standard
o “New” language: Cray Chapel

o But performance often sucks

o Therefore sometimes used together with MPI in a hybrid code

o SHMEM/OpenSHMEM, GASPI and single-sided communication in MPI-2 are library approaches
based on the same idea

o So far limited popularity (except probably one-sided MPI communications)

Example applications

» QuantumESPRESSO:
o Hybrid MPI/OpenMP program
o Configuration determined through command line options and environment variables
o Scales quite well when used in the right way
» GROMACS
o Some modules are hybrid MPI/OpenMP

» SAMtools (bio-informatics)
o Tend to run single-core by default, but if you check the manual you’d see it can actually exploit
shared memory parallelism

o And this is configured through command line options

supercomputing

/
— (& Vlaanderen

S up e rco m p u te rs fo r ‘ft*‘rte rS

Part 7: What can we eXpect? ‘; #.-I-‘If N

VLAAMS
SUPERCOMPUTER | innovative Computing ; b
CENTRUM | for A Smarter Flanders vscentrum.be

Speed-up

> Or: how much can you gain by supercomputing?
> Using 100 processors should mean your job runs a 100 times faster, right?

128

Assumes 99% of the application can be
parallelised, no communication
X overhead and a perfect load balance.

64 or 128 processors doesn’t
make sense for this case.

f o

More realistic model accounting

8 40 16: Twice the cost for
only 35% extra performance
rarely worth the cost.

4 . .
for communication —|d eal
2 . .
Sweet spot for this Amdahl
1 particular problem —caturation

1 2 4 8 Cores 16 32 64 128

Speed-up

> Using X processors will (almost) never speed up your application with a factor X.
o There is always some overhead in using multiple cores.

o There are rare cases though where you may see what is called a superlinear speedup due to cache
effects (more cores and nodes = more cache for your program).

> There is no rule like program A runs best on X cores.
o X depends not only on the application,
o It also depends on the cluster: CPU characteristics, interconnect, ...

o But also on the problem being solved. The larger the problem, the larger the optimal number of
cores.

> Bigger problems = better speed-up

lllustration: Matrix multiplication
lllustrating cache effect and speedup

SUPERCOMPUTER
CENTRUM

Matrix multiplication

Cor

] ¢ L -]| Cij t= Zai,kbk,j

: . J . -

vi b S

fori=1toN forj=1to N

forj=1to N fori=1toN
fork=1to N fork=1to N
c(i,j) = c(i,j)+ali,k)*b(k,j) c(i,j) = c(i,j)+a(i,k)*b(k,j)

ijk-variant jik-variant

6 variants of matrix multiplication C= C+ A*B

ijk
fori=1toN
forj=1to N
fork=1toN
c(i,j) = c(i,j)+a(i,k)*b(k,j)

ikj
fori=1toN
fork=1toN
forj=1to N
c(i,j) = c(i,j)+a(i,k)*b(k,j)

kij
fork=1toN
fori=1toN
forj=1to N
c(i,j) = cli,j)+ ali,k)*b(k,j)

jik
forj=1toN
fori=1toN
fork=1toN
c(i,j) = c(i,j)+a(i,k)*b(k,j)

jki
forj=1toN
fork=1toN
fori=1toN
c(i,j) = c(i,j)+ a(i,k)*b(k,j)

kji
fork=1toN
forj=1to N
fori=1toN
c(i,j) = c(i,j)+ ali,k)*b(k,j)

Fortran timings

» GNU Fortran, matrix size 2500x2500 (47.7MB/matrix),
1 core of Xeon E5-2680v2 = 22.4 Gflops @ 2.8 GHz

ijk
jik
ikj
jki
Kij
Kji
F95 MATMULT

OpenBLAS dgemm (1 thread)
OpenBLAS dgemm (20 threads)

> To explain these results: Look at memory accesses
o Fortran stores arrays column by column

17.16
24.35
63.68

9.87
40.77

13.29
9.51
1.27
0.08

Gflops

1.821
1.283
0.491
3.165
0.766

2.352
3.285
24.60
396.42

X6.5

X7.7

jki-variant

forj=1to N
fork =1to N

c(i,j) =

fori=1toN
c(i,j)* a(i,k)"b(k.j)

Inner loop for j

=2,k=3:

(10O

=c(1,2)
=c(2,2)
=¢(3,2)
=c(4,2)
c(:,]) = c(z)) + a(:,k)*b(k,j)

Works with column vectors

howon=

+a 3,
+a b(3,
+a 3,
+a 3.

(1,3)70(
(2,3)"b(
(3,3)"b(
(4,37

2)
2)
2)
2)

jki-variant

| k=1:c(;,2) =c(:,2) +a(:,1)*b(1,2)
forj=1 t_o N k=2: c(:,2) =c(:;,2) + a(:,2)*b(2,2)
for k —_1_’[0 N k=3: c(:,2) = c(:,2) +a(:,3)*b(3,2)
fori=1toN k=4: c(:,2) = c(:,2) + a(:,4)*b(4,2)

c(i,)) = c(i,j)+ a(i,k)*b(k,j) A column by column

Single column of B
Single column of C, accessed N times

Inner two loops for j = 2:

. 1 . . d 01717111 - - - -
|l . += T NN | R O .
S K IR dN A REEE LT O

How can BLAS be even faster?

»> What is BLAS?
o Basic Linear Algebra Subprograms

o Basic building block for s