
vscentrum.be

Supercomputers for Starters
February 2025

Kurt Lust – CalcUA, VSC and LUMI User Support Team

vscentrum.be

Supercomputers for Starters
Part 1: Introduction

Goals

➢ Why would one consider using supercomputers?

➢ How does supercomputer hardware influence our choice of software and programming techniques?
And does that also affect regular PCs or devices like tablets and smartphones?

➢ What can (should) we (not) expect from a supercomputer?

➢ Yes, because supercomputers are very expensive machines and thus must be used efficiently

o and that depends on the problem you’re trying to solve,

o your choice of software,

o and on the resources that you request when starting a program.

o In fact, if your software cannot exploit the hardware sufficiently well or your problem is too small,
you should use something else.

I’m not a programmer, do I need to know all this?

Goals

➢ Why would one consider using supercomputers?

➢ How does supercomputer hardware influence our choice of software and programming techniques?
And does that also affect regular PCs or devices like tablets and smartphones?

➢ What can (should) we (not) expect from a supercomputer?

➢ I prepared this lecture by looking at manuals of some software packages that our users use, including
CP2K, OpenMX, QuantumESPRESSO, Gromacs and SAMtools and checked what those packages use.

o The Gromacs manual even contains a section that tries to explain much of what we see here.

I’m not a programmer, do I need to know all this?

Gromacs manual
core thread

cache thread affinity

socket OpenMP

node MPI

GPU rank

SIMD CUDA

OpenCL

SAMtools

Nice defaults for a ’05 PC

What is a thread?
How do I choose the number?

VASP

From the VASP online manual and Wiki:

Why supercomputing?

➢ Processing large datasets may require

o more storage capacity than a workstation can deliver,

o more bandwidth (memory or disk) than a regular server can deliver, and

o more processing power than a workstation can deliver.

➢ Large simulations (e.g., partial differential equations)

o may require (far) more processing power than a workstation can deliver

o and often generate large data sets.

➢ Parameter analysis or Monte Carlo sampling:

o A workstation may have enough processing power to process a single sample (or a few of them),

o but what if we have 1000s of them?

Supercomputing jobs

Improve turnaround time
Large memory capacity
Capability computing

Improve throughput
Capacity computing

Scientific visualisation of large data
sets or simulation results

Training a big AI model

US postal: Electronic stamp

Computational Fluid Dynamics,
e.g. air flow around windmill

Fluid-structure interactions

Virtual crash test

Simulation of complex molecules

Climate modelling

Gene sequencing

Data mining / search engines

CERN LHC data processing

Language research: Pre-processing
of a text corpus

Parameter study: Simulate a
system for multiple values of the
parameters

Test a range of molecules for some
properties

Risk analysis for banks

Simulation Data processing

Hours per job

Jobs per hour

What it does not

I have a Turbo Pascal program that runs too slow

on my PC, so I want to run it on the supercomputer.

➢ Supercomputers only become supercomputers when running supercomputer software.

➢ All supercomputers nowadays are parallel computers combining sometimes thousands of regular
CPUs to get the job done.

➢ The efforts to get your problem working on a supercomputer range from relatively minor to
extensive. E.g.,

o Parameter analysis or Monte Carlo sampling requires a relatively minor effort

o Numerically solving a partial differential equation (e.g., fluid flow or mechanical stresses) requires a
major effort but can deliver very good results

➢ But in many cases, someone else has done the work for you and software is already available.

A supercomputer is a parallel computer

➢ A supercomputer is not a superscaled PC but a parallel computer in which

o many processors work together to create a fast system

▪ and this is multi-level parallelism

o memory is organised in a hierarchy: from fast buffer memory close to the processor to slow disks

o many hard disks and/or flash chips combine with the help of software into a powerful storage
system

➢ And in the current state-of-technology this is far from transparent! (Well, it is transparent for
correctness but not for performance)

➢ Hence the need for properly written software!

➢ PC’s are just getting there (since roughly 2017)

➢ And tablets and smartphones are there also

o For a while one could even argue that smartphones and tablets are better parallel computers than
the average PC

Part II

Part IV

Part III

A layered architecture

Hardware
Cores, nodes, network, GB memory, distributed
or shared memory, …

Middleware
Abstraction of the hardware

MPI message passing, OpenMP, PGAS, ….

Application

➢ Needed when starting a job

➢ Understand if and how an application
can run (efficiently) on a given system

➢ System requirements for applications

➢ Good understanding needed if you want
to program yourself

➢ This is what interests most of us. But…

these lectures

domain-specific

OS

A layered architecture

Hardware
Cores, nodes, network, GB memory, distributed
or shared memory, …

Middleware
Abstraction of the hardware

MPI message passing, OpenMP, PGAS, ….

Application

OS

➢ Part VII discusses what we can expect
from parallel computing

➢ Part VI discusses popular middleware

➢ Part II-V discuss hardware aspects

A compartmentalised supercomputer

Compute section(s)

➢ Where the actual computations are done

Login section

➢ Access point for users

Storage section

➢ Run the file system

Management section

➢ Controls the system

vscentrum.be

Supercomputers for Starters
Part 2: Processors in supercomputers

The CPU: 1 GHz ≠ 1 GHz

➢ Supercomputers use CPUs derived from those in PCs or smartphones

o But have enhancements for reliability

➢ These CPUs have gone through a long evolution to do more work per clock cycle:

o More instructions per clock: Instruction-Level Parallelism

o More work per instruction: Vectorization and matrix computing

➢ But this was not enough, so

o More CPUs (“cores”) that share memory: shared memory parallel computing

o Multiple “nodes” that collaborate by sending messages over a network: distributed memory
parallel computing

GHz does not measure how much work a CPU can do.

A simple computer

Processor

Memory

➢ Processor executes simple instructions (e.g., add two
numbers)

➢ Memory stores the data in a linear structure

➢ A clock governs everything

➢ Processor is currently 1 chip (or a small part of a chip), but
long ago this could consist of multiple chips (even 1000s of
chips)

Cray 1 (1976):

➢ Processor: 20,000 chips

➢ Memory: 73,728 chips,

➢ Mean time between failure = 50h

A simple computer – A look inside

Memory

➢ ALU: Arithmetic and logical unit, does the actual
computations

➢ Registers: Fast memory cells where ALU instructions fetch
their data and write their results

➢ AGU & memory controller: To connect to the memory

➢ Control unit: Coordinates the work

Control unit

ALU

Other
logicAGUReg.

Executing instructions
Ti

m
e

fetch/decode

get operands

execute

write result

fetch/decode

get operands

execute

write result

fetch/decode

get operands

execute

write result

➢ Instructions execute one after another

➢ But instruction execution consists of multiple phases

➢ One step/phase per clock tick: 0.25 instructions per clock in this

example

➢ But note: Different phases use different logic on the chip

Instruction-level parallelism: Pipelining
Ti

m
e

F/D

GO

EX

WR

➢ Different phases use different logic on the chip

o So can we create overlap in the processing of instructions?

➢ Pipelining: Compare to a car assembly line

➢ In this simple model: Ideally 1 instruction per clock, 4 times faster

o But this requires that the next instruction doesn’t need the result of

the previous one

➢ Instruction-Level Parallelism: The CPU is working on multiple

instructions simultaneously

➢ Supercomputers: IBM System/360 Model 91 (1964), CDC7600 (1967)

➢ Used in PC CPUs since the mid ’80s: i386 (1985) and i486 (1989)

F/D

F/DGO

EX

WR

GO

EX

WR

Instruction-level parallelism: Superscalar execution
Ti

m
e

F/D

GO

EX

WR

 Now we could increase the number of ALUs and AGUs on the
processor

▪ Start multiple instructions simultaneously

 Superscalar execution, also a form of ILP

 Potential for >1 instruction/clock and specialised ALUs

 Supercomputers: IBM System/360 Model 91 (1964), CDC6600

(1964 - before pipelining!)

 PC technology: 90’s, Pentium (1993) and Pentium Pro (1995)

▪ And has evolved with hardware reordering of instructions

F/D

GO

EX

WR

F/D

GO

EX

WR

F/D

GO

EX

WR

 Exploitation of ILP is largely done by the compiler and CPU hardware

 But whether a compiler can exploit ILP also depends on the program itself.

▪ Frequent testing tends to kill ILP

Data parallelism through vector computing

➢ Pipelined and superscalar execution: complicated logic and hence a lot of power

o But a common case that is well suited for superscalar execution is working with vectors

➢ So designing CPUs with vector instructions (“wider ALUs”) can boost speed without the full power
requirements of a superscalar processor.

o An example of Single Instruction stream, Multiple Data stream (SIMD) architecture

➢ Popular in supercomputers in the 70s-80s, but then almost disappeared.

o CDC STAR-100 (1974), Cray-1 (1976, first with vector registers)

o NEC still makes vector computers (architecture: 256-wide DP, 32-wide DP execution x 8 steps)

➢ However, now returning in general-purpose computers (but shorter vector length)!

o MMX (1996) / SSE (1999) / AVX (2011) instructions in x86 processors (but only short vectors)

o AVX-512/AVX-10 in (defunct) Xeon Phi for HPC, Skylake X and newer (16-wide SP, 8-wide DP)

o NEON in ARM (4-wide SP, 2-wide DP)

o SVE in ARM for Fujitsu supercomputer (architecture: 2048-bit, 32-wide DP, implementation: 512-
bit, 8-wide DP) and in ARM v9 (Samsung S22 and later, NVIDIA Grace CPU, Apple A18/M4)

o AMD GCN and CDNA GPU’s (16-wide SP hardware, 64-wide SP instructions) and RDNA GPU’s

Data-level parallelism: Other SIMD

Memory (RAM)

Control unit

ALU

Other
logic…

➢ Many “processors”, but they share the control
unit and must all execute the same instruction
on different data.

➢ Historical example: Thinking Machines
Connection Machine CM-1 (1983)

➢ Modern example: NVIDIA GPUs (10-100+
SIM(D)(T) processors on a chip)

➢ Difficult to program efficiently!…

Reg AGU ALU Reg AGU

Conclusion:
2 levels of parallelism in the CPU

CPUs can do more work per clock by doing:

➢ More instructions per clock cycle: Instruction-level parallelism

o Mostly hard work for the CPU control logic and the compiler

o Some work for the application developer

o You can expect a gain from this technology without even recompiling your application

➢ More work per instruction: Data-level parallelism through SIMD/vectorisation

o Hard work for the compiler

▪ Most programming languages not very helpful: They don’t offer enough information to the
compiler

o Therefore the compiler is only moderately successful in vectorising the code, so work for the
application developer.

o No gain without recompiling for vector instructions

Symmetric multiprocessing

➢ Multiple independent processors, each working on their
own data elements: MIMD (Multiple Instruction, Multiple
Data)

➢ All processors equal: symmetric multiprocessing (SMP)

➢ Every processor equal access to all memory: Shared
memory with Uniform Memory Access

➢ But there is a potential bottleneck: the bus to memory

Proc.

Memory

Proc.Proc. Proc.

Bus/switch/ring/mesh

Bottleneck!

➢ Increase performance by using multiple processors

Symmetric multiprocessing

➢ Evolution of terminology: As multiple “processors” were
integrated on a single die (“chip”), it became unclear

what was the processor:

o Core: The unit on the chip that by itself could execute a
program

o Package: Contains one or more dies with one or more
cores each

o Socket: Often the package is plugged into a socket, OS
uses the term socket

o Processor: Often used for the package

➢ Shared memory multiprocessing is everywhere:

o PC and smartphone processors

o GPU: Multiple SIMD procs!

core

Memory

corecore core

Bus/switch/ring/mesh

1 chip package in PC

➢ Increase performance by using multiple processors

Shared-memory multiprocessing
Non-Uniform Memory Access

➢ Split the memory, but maintain a global address space

➢ Each (multi-core) chip has some memory attached to it.

➢ Chips are connected via a special-purpose network (UPI =
UltraPath, Infinity Fabric, future: CXL)

➢ Each core on each chip can still directly reach all memory,
but access to “local” memory faster than to “remote”
memory: NUMA

➢ Transparent with respect to correctness of programs but not
fully transparent when it comes to performance

Looks like a single large memory
Single address space

Chip

Memory

Chip

Memory

faster

slower

Shared-memory multiprocessing
Non-Uniform Memory Access

➢ Split the memory, but maintain a global address space

➢ Examples:

o All current multiple-socket server CPUs, e.g., Intel Xeon or
AMD Epyc

o SGI Altix UV / HPE Superdome Flex: up to 64 chips

o AMD EPYC gen 1 (Naples): Up to 4 dies with each 2 memory

controllers and 2 groups of 4 cores, with an interconnect

between the dies.

o Some Intel Xeon CPUs and more recent AMD EPYC CPUs can

also be split logically into two or more clusters on a single die

Looks like a single large memory
Single address space

Chip

Memory

Chip

Memory

faster

slower

What does this look like in software?

➢ Process: Operating system concept.

o Created when you start an app on your phone, click on a .exe-file in Windows or type a command
in Linux.

o Has an amount of memory that other processes cannot access, can have exclusive access to files
etc.

➢ In the old days (think MS DOS), there was one stream of instructions executed in the context of a
process.

o A single application would not be able to exploit multi-core processors!

➢ (OS) thread:

o An instruction stream that is executed in a process

o So every thread can see all memory of that process (though there is some thread-private memory)

o Threads can run on different cores, though 1 core can also execute multiple threads by
continuously switching between them.

o But be careful with compute threads in scientific computing applications!

What does this look like in software?

My Mac while compiling some code, playing a YouTube video in
Chrome and some music in iTunes, all at the same time.

Hardware threads

➢ Different names for similar technologies: Simultaneous Multi-Threading (generic term, IBM POWER,
AMD Zen), Hyper-Threading (Intel), hardware threading (Oracle)

➢ Often not enough parallelism in a single instruction stream to exploit all resources on a core

o So run multiple instruction streams on a single core

o The core effectively behaves as multiple virtual cores, but those virtual cores compete for the same
resources

➢ Gain depends on the architecture and the application.

o Intel Xeon or Core i7: the gain of the second thread is often moderate

o On Intel Xeon Phi KNC generation you need to use at least two hardware threads to get the
maximal performance.

➢ Fairly transparent in software (though not 100% performance transparent)

➢ Hyperthreading enabled on some node types at the VSC.

Programming shared memory

➢ Automatic parallelisation is probably even less successful than automatic vectorisation

➢ So as a programmer, you’ll need to work, and there are several approaches:

o See section VI on middleware

➢ So this implies that your application has to be written to exploit this level of parallelism

o Though it can be easily exploited by running multiple copies of your program with a different data
set, each on a single core

o Even as a user you have to be aware of this as you often need to tell your program how many
threads it should use

Distributed memory

➢ NUMA also has its scaling limits:

o Hardware: Technological challenges limit scaling

o Software: Operating systems do not scale well enough

o Economical: Large fast networks are expensive

NodeNode

Chip

Memory

Chip

Memory

➢ Solution:

o Take a number of pretty standard computers (called
the “nodes”)

o Link together with a network (“interconnect”)

➢ Communication over a network by sending and

receiving (application-initiated) messages

o No joint global address space (at least not in

hardware)!

o Evolution to interconnects with limited memory

semantics.

Distributed memory

➢ No direct access to the memory of another node

o Hence at least 1 process per node

o And software to let those processes communicate by sending messages over the network.

NodeNode

Chip

Memory

Chip

Memory

➢ Harder to program, but far more scalable than shared

memory

➢ Beowulf cluster hype (1994 on): Let’s build this with

cheap&lousy standard components

➢ In practice, you need high-quality components and

sometimes dedicated technology for good

performance and high enough reliability

Cheap&lousy - Anecdotes

➢ 2002, ASCI Q @ Los Alamos National Laboratory: 2048 4-socket nodes, DEC Alpha EV-68

o Initial mean-time-between-crashes of 1 hour due to cosmic ray sensitivity

o After better shielding: MTBC of 6 hours

o Cause: Data path without error correction in DEC Alpha CPU

➢ 2003, Big Mac @ Virginia Tech: 1,100 PowerMac G5 cluster

o Started crashing before it was completely booted

o Cause: No ECC memory and therefore too sensitive to cosmic rays

➢ 2009, Jaguar, Cray XT5 system at Oak Ridge National Laboratory

o Then the largest system in the world. 360 TB of memory, 18774 nodes with 2 quad core AMD
processors.

o 350 correctable ECC errors per minute!

o On average an uncorrectable 2-bit error every 24 hours

➢ See IEEE spectrum article “How to kill a supercomputer: Dirty power, cosmic rays, and bad solder”

http://spectrum.ieee.org/computing/hardware/how-to-kill-a-supercomputer-dirty-power-cosmic-rays-and-bad-solder

Programming distributed memory

➢ Automatic strategies through the compiler never made it past the research phase

➢ So very hard work for the programmer

o Though there are computer languages that help

o See section VI on middleware

➢ So this implies that your application must be written to exploit this level of parallelism

o Though it can be easily exploited by running one or more copies of your program independently on
each node

A modern supercomputer...

A modern supercomputer often uses all these tricks!

➢ Most modern supercomputers are distributed memory machines, a network of compute nodes and
some specialised nodes.

➢ Each node is a shared memory machine,

o often of the NUMA type with two or more CPU packages (sockets)

o where each socket contains a multi-core CPU very similar to the processor in your PC but with more
cores

o and each core often operates as two (or more) virtual cores through hardware threads.

➢ Each processor core on such a chip nowadays supports vector instructions

➢ and has extensive instruction-level parallelism.

➢ Add a GPU (or other) accelerator and things become even more complicated.

Almost all supercomputersMost servers, some supercomputersPC and smartphone

socket

C
HT

HT

C
HT

HT

C
HT

HT

C
HT

HT

C
HT

HT

C
HT

HT

C
HT

HT

C
HT

HT

C
HT

HT

C
HT

HT

C
HT

HT

C
HT

HT

C
HT

HT

C
HT

HT

C
HT

HT

C
HT

HT

C
HT

HT

C
HT

HT

C
HT

HT

C
HT

HT

MCs

C
HT

HT

C
HT

HT

C
HT

HT

C
HT

HT

C
HT

HT

C
HT

HT

C
HT

HT

C
HT

HT

C
HT

HT

C
HT

HT

C
HT

HT

Vaughan (AMD Rome) node

To interconnect

➢ Vaughan @ UAntwerpen

➢ Hortense 1 @ UGent (but 16 core
complexes per socket)

➢ LUMI @ CSC but AMD Milan with 8
complexes of 8 cores per socket in
the CPU section, and new nodes in
Hortense

C
HT

HT

socket

C
HT

HT

C
HT

HT

C
HT

HT

C
HT

HT

C
HT

HT

C
HT

HT

C
HT

HT

C
HT

HT

C
HT

HT

C
HT

HT

C
HT

HT

C
HT

HT

C
HT

HT

C
HT

HT

C
HT

HT

C
HT

HT

C
HT

HT

C
HT

HT

C
HT

HT

C
HT

HT

C
HT

HT

C
HT

HT

C
HT

HT

C
HT

HT

C
HT

HT

C
HT

HT

C
HT

HT

C
HT

HT

C
HT

HT

C
HT

HT

C
HT

HT

C
HT

HT

MCs

128 GB
memory

128 GB
memory

socket

C
HT

HT

C
HT

HT

C
HT

HT

C
HT

HT

C
HT

HT

C
HT

HT

C
HT

HT

C
HT

HT

C
HT

HT

C
HT

HT

C
HT

HT

C
HT

HT

C
HT

HT

C
HT

HT

C
HT

HT

C
HT

HT

C
HT

HT

C
HT

HT

C
HT

HT

C
HT

HT

MCs

C
HT

HT

C
HT

HT

C
HT

HT

C
HT

HT

C
HT

HT

C
HT

HT

C
HT

HT

C
HT

HT

128 GB
memory

128 GB
memory

C
HT

HT

C
HT

HT

C
HT

HT

Vaughan (AMD Rome) node

To interconnect

C
HT

HT

socket

C
HT

HT

C
HT

HT

C
HT

HT

C
HT

HT

C
HT

HT

C
HT

HT

C
HT

HT

C
HT

HT

C
HT

HT

C
HT

HT

C
HT

HT

C
HT

HT

C
HT

HT

C
HT

HT

C
HT

HT

C
HT

HT

C
HT

HT

C
HT

HT

C
HT

HT

C
HT

HT

C
HT

HT

C
HT

HT

C
HT

HT

C
HT

HT

C
HT

HT

C
HT

HT

C
HT

HT

C
HT

HT

MCs

C
HT

HT

C
HT

HT

C
HT

HT

C
HT

HT

➢ Memory controller in 4 quarters,
serves 1 (Vaughan) or 2 CCD
(Hortense, LUMI), so the system even
behaves as a NUMA system at the
socket level.

32
GB

32
GB

32
GB

32
GB

32
GB

32
GB

32
GB

32
GB

Fast evolution

➢ A typical PC in 1977 (TRS 80 model 1, Apple II) had a clock speed of 1-2MHz, no floating point
hardware and because of that only reached on the order of 100-200 flops.

➢ Unfortunately we’ve come to the end of this fast evolution (see later)…

1977: Cray 1A (ECMWF) 2007: Apple iPhone

80MHz CPU, 160-250 Mflops 412MHz CPU, 412 Mflops

8 MB RAM 128 MB RAM

2.4GB disk space Up to 8GB permanent storage (flash)

5,500 kg 0.135 kg

115 kW A few Watts

$8.86M $500

MTBF: 50 hours Weeks without reboot, years without repair

Needed a CDC as front-end Comes with a tiny built-in monitor

Fast evolution (2)

16 66MHz IBM Power2+ CPUs 1 dual-core Intel CPU@1.3 GHz

4.25 Gflops DP 41.6 Gflops DP (more with turbo boost)

11/1994: Position 198 in Top500
11/1995: Position 409 in Top500

11/2014: Position 198 is 364 Tflops
11/2015: Position 409 is 391 Tflops
06/2015: Position 500 is 402 Tflops

3 GB RAM 8GB RAM

80GB disk space 256 GB disk space (SSD)

1 ton? Less than 2kg (with power supply)

>10 kW? <45W

1M€? €1300

1994: KU Leuven SP2 2014: My laptop (MacBook Air)

Can a PC be faster than a supercomputer today?

YES!

➢ Because they are optimised for different tasks

➢ Power consumption of electronics on a chip: Twice the clock speed for a given core architecture
requires far more than twice the power.

➢ Assume a factor 4:

o Suppose we could run 4 cores at 4 GHz for 100W of power,

o Then we could run 16 cores at 2 GHz for the same 100W of power.

o So if the performance of the cores would be the same per clock tick in both scenarios, the 16-core
configuration is twice as fast for applications that can make effective use of all cores.

o However, if an application cannot use multiple cores efficiently, the 4-core configuration will be
faster.

Can a PC be faster than a supercomputer today?

YES!

➢ Your desktop PC is optimized to run both moderately parallel applications and serial applications well.
Hence the choice was made to use fewer cores at a higher clock speed.

o For a long time, PC’s had very few cores that ran at a very high clock speed.

o This is changing, but very high “turbo boost” frequencies save us for single-threaded applications

➢ The processors of our clusters however are mostly optimized for applications with a high degree of
parallelism. Hence they have a lot of cores but at a lower clock speed than most desktop PCs.

➢ So if your software/workflow is not parallel, running it on a supercomputer is a waste of money.

➢ Supercomputers need appropriate software to function as a supercomputer! In fact, the key point of
supercomputing since the mid ‘80s has been adapting software to be able to use cheaper hardware.

Don’t believe me?

E5-2623v3 E5-2660v3

Cores 4 10

Clock 3 GHz 2.6 GHz

Power 105 W 105 W

L3 10 MB 25 MB

Memory bandwidth 59 GB/s 68 GB/s

Gflops peak DP/core 48 41.6

Gflops peak DP 192 416

HPC power budget

E5-2637v4 E5-2698v4 E5-2699v4

4 20 22

3.5 GHz 2.3 GHz 2.3 GHz

135 W 135 W 145 W

15 MB 50 MB 55 MB

76.8 GB/s 76.8 GB/s 76.8 GB/s

56 36.8 36.8

224 736 810

Maximum performance

x2.16 X3.3 X3.6

The table is for a pretty old generation of Intel CPUs but one we can still understand.

Part II: Lessons learnt

➢ 4 levels of parallelism in supercomputer, 3 of them also on PCs

➢ Hardware of a supercomputer is optimized for parallel performance and not for sequential
performance.

o No parallelism = no supercomputing

➢ Computers (and compilers) have evolved. Hence:

o A 10-year old binary won’t run efficiently and might not run at all.

o Code that remained unmodified for 20 years will not exploit all the parallelism on modern
computers either. In fact, it won’t even be efficient on your PC.

➢ A supercomputer contains 1000’s of times more parts than a regular PC. Hence it probably won’t be
as reliable, so it is not a good idea to try to run a multi-day job without making sure it stores enough
data to restart an interrupted computation.

Intermezzo: A look at the processor

CPU die shot

Core (18 in total)

Connections to the outside world: Memory and PCIe slots

L3 cache segment
(18 in total)

Intel E5 v3 14-18C die (Haswell generation)

Regular PC processor die

Haswell-generation chip for regular
laptop/desktop, same scale as on
previous slide.

Broadwell generation chip for low-
power laptops, e.g., a 2015 MacBook
Air (1 generation later), same scale.

capacitors for denoising
power supply

A CPU package

heat spreader

Substrate: routes electric contacts from the chip
to the outside world, and can contain other
components or even multiple chips (dies)

2011 pins to connect
to the motherboard

CPU die: invisible, sits
between the heat spreader
and the substrate

vscentrum.be

Supercomputers for Starters
Part 3: The memory hierarchy

The memory performance gap

➢ Evolution of computers 1996-2025:

o latency (time to first bit arriving) of memory subsystem:

▪ 1996: Pentium Pro with PC100 SDRAM: 300 ns or 60 clock cycles

▪ 2025: AMD Turin with DDR5 memory: 120 ns or 324 clock cycles

o processor chip memory bandwidth

▪ 1996: Pentium Pro: 64-bit 66 MHz bus: 0.52 GB/s

▪ 2023: AMD Turin: 12 64-bit channels@6000 MHz DR: 576 GB/s

o floating point speed (double precision):

▪ 1996: Pentium Pro, 200 MHz, 0.2 Gflops peak DP

• 300 ns = 60 flops

• 200 Mflops = 1.6 GB/s results generated

▪ 2025: AMD Epyc 9755: 128C, 2.7GHz: 11,059 Gflops peak DP

• 120 ns = 1,327,100 flops

• 11,059 Gflops = 88,472 GB/s results generated

ns /2.5

x 1,108

x
55,296

x 3

x 154

cy x 5.4

The memory performance gap:
Speed-limiting factors

➢ What limits memory speed?

o larger memory is slower due to physical constraints

▪ larger size = longer travel distances in the memory device

▪ and also further away from the CPU so longer distance to the CPU

o and is slower due to economical constraints:

▪ faster memory cells are more expensive (latency)

▪ can’t afford the same number of links to off-chip as to on-chip memory (bandwidth)

➢ On-die memory can be very fast, but is expensive and limited in capacity:

o different type of memory cell that takes more space per bit

o wide paths are possible

➢ On-package memory: DRAM chips on the substrate

o very wide bus (Apple M1 Max: 512 bit, AMD MI100, NVIDIA V100 and Fujitsu A64fx: 4096 bit,
NVIDIA A100: 5120 bits, NEC SX-Aurora TSUBASA 1st/2nd gen: 6144 bits, AMD MI250: 8192 bit)

o but limited capacity

The memory performance gap:
A solution

➢ To mitigate the memory performance gap problem, small memory “buffers” called cache memory
have been added to the CPU chip:

o most caches are transparent to the programmer with respect to correctness: the system manages
the caches automatically

o but not transparent with respect to performance

▪ optimize memory access patterns to improve the cache hit rate

➢ In fact, modern systems have a cache hierarchy with three or four levels

o a small level 1 (L1) cache, e.g., 32 kB, and often specialized for certain “data”: instructions, integer
data, …

o a larger but slower L2 cache per core, e.g., 256 kB, 512 kB or even 1 MB or 2 MB

o a L3 cache shared by all cores, 2-4 MB/core is not uncommon. E.g., the E5-2699v3: 45 MB cache
(2.5 MB/core), AMD 9755: 512 MB cache (4 MB/core), AMD Genoa-X has 12-48 MB/core

o Intel Sapphire Rapids MAX has 64 GB of HBM memory in the package (but that remains an
experiment for now)

The memory performance gap:
What can we do?

➢ It is important to organize data access in code in an appropriate way so that data access becomes
local and predictable rather than random. Ideally we stream data through the processor.

o We’re not talking about a potential 2x performance increase, but rather 100x or 1000x compared to
a really bad code!

o For linear algebra, FFT, image processing, …, very good libraries exist, use those and don’t start your
code from scratch!

▪ Example: BLAS – basic vector and matrix operations and used in many other linear algebra
libraries

• Reference implementation in Fortran sucks on modern systems

• But there are several excellent commercial and free implementations: Intel MKL, AMD Core
Math Library, OpenBLAS, Bliss, Atlas, …

o Frameworks for other types of applications, e.g., solving PDEs.

➢ If you use code, it is important to realize that not all code is created equal and big performance
differences do occur.

The memory hierarchy

registers

L1 cache

L2 cache

L3 cache

RAM

disk storage

<1kB/hw thread
~7kB physical

2 x 32 kB/core

256 kB/core

35 MB/socket

128 GB/node
(144)
256 GB/node (8)
no swap
600 TB
152 nodes

no swap
600 TB
152 nodes

<1kB/hw thread
~6kB physical

2 x 32 kB/core

512 kB/core

128 MB/socket
16 MB / 4 cores

256 GB/node

Leibniz (UA)
“Broadwell”

Vaughan (UA)
AMD “Rome”

no swap
26 PB
5632 nodes

<1kB/hw thread
~6kB physical

2 x 32 kB/core

512 kB/core

256 MB/socket
16 MB / 4 cores

256 GB/node

Hawk (HLRS)
AMD “Rome”

Vaughan (AMD Rome) node revisited

➢ L1 and L2 cache is private per core

➢ L3 cache shared per 4-core core
complex (CCX) or per 8 cores on
LUMI (AMD Milan)

o Fast access to buffer memory of
own CCX, but almost as slow as
main memory access otherwise.

➢ AMD Rome: 2 CCX per die, share a
link

➢ Memory controller in 4 quarters,
each quarter serves 2 or 4 CCX
(Rome) or 1 or 2 CCX (Milan)

socket

C
HT

HT

C
HT

HT

C
HT

HT

C
HT

HT

C
HT

HT

C
HT

HT

C
HT

HT

C
HT

HT

C
HT

HT

C
HT

HT

C
HT

HT

C
HT

HT

C
HT

HT

C
HT

HT

C
HT

HT

C
HT

HT

C
HT

HT

C
HT

HT

C
HT

HT

C
HT

HT

MCs

C
HT

HT

C
HT

HT

C
HT

HT

C
HT

HT

C
HT

HT

C
HT

HT

C
HT

HT

C
HT

HT

128 GB
memory

128 GB
memory

C
HT

HT

C
HT

HT

C
HT

HT

To interconnect

C
HT

HT

socket

C
HT

HT

C
HT

HT

C
HT

HT

C
HT

HT

C
HT

HT

C
HT

HT

C
HT

HT

C
HT

HT

C
HT

HT

C
HT

HT

C
HT

HT

C
HT

HT

C
HT

HT

C
HT

HT

C
HT

HT

C
HT

HT

C
HT

HT

C
HT

HT

C
HT

HT

C
HT

HT

C
HT

HT

C
HT

HT

C
HT

HT

C
HT

HT

C
HT

HT

C
HT

HT

C
HT

HT

C
HT

HT

MCs

C
HT

HT

C
HT

HT

C
HT

HT

C
HT

HT

32
GB

32
GB

32
GB

32
GB

32
GB

32
GB

32
GB

32
GB

Combined hierarchy: AMD Rome (Vaughan and Hortense)

hierarchy
layer

per sharing distance data transfer
delay

data transfer
bandwicth

1 2 HW threads core L1I, L1D, L2

2 4 cores CCX L3

3 2 CCXs CCD link to I/O die

4 1 (Va) / 2 (Ho)
CCDs

NUMA
node

DRAM channel
(and PCIe lanes)

5 4 NUMA nodes socket inter-socket link

6 2 sockets node inter-node link

Combined hierarchy: AMD Milan (LUMI, Horense extension,
newer Vaughan nodes)
hierarchy
layer

per sharing distance data transfer
delay

data transfer
bandwicth

1 2 HW threads core L1I, L1D, L2

2 8 cores CCX L3
Link to I/O die

3 2 CCDs NUMA
node

DRAM channel
(and PCIe lanes)

4 4 NUMA nodes socket inter-socket link

5 2 sockets node inter-node link

vscentrum.be

Supercomputers for Starters
Part 4: Storing data on supercomputers

Files on a supercomputer

➢ Just as physics make it impossible to build a single processor core that is 1,000 times or 1,000,000
faster than a regular CPU core, it is not possible to make a hard disk that spins 1,000 times faster and
has a capacity that is 1,000 times more than current hard disks.

➢ So how do we build a storage system for a supercomputer?

o Same idea as for CPUs: build a large and fast system out of 100s or 1,000s of regular disks

o And use clever software to make this work as if it is one large and very fast disk

o Also used to make fast SSD drives for PCs and smartphones (which is why the 256 GB M2 13”
MacBook Pro has slower storage than the 512 GB one).

➢ But just as not all programs can take benefit from multiple processors, not all programs can take
benefit of such a disk setup.

o A parallel setup only works when programs access large amounts of data in large files

o And even though the parallelism can increase the bandwidth, the latency is still limited by that of
each device

Problem 1: Disks break

➢ Drives fail quite often (and flash-based SSDs aren’t much better than hard disks)

o If you have 1,000 drives, you can expect one to fail on average every 50-100 days.

o Losing some data every 50 days is already quite bad…

o But since all disks operate like one giant disk with files spread over multiple disks, you may actually
lose a significant amount of data.

➢ Solution:

o Use some disks to store enough information to recover lost data on another disk by using error
correcting codes

o Implies using larger “blocks”:

▪ e.g., 8+2 configuration: “Block” size will be 8 times that of a regular disk, so typically 32 kB
instead of 4 kB

Problem 1: Disks break

➢ Performance consequences for writing data:

o Whenever writing you need to update data on at least three disks (assuming 8+2 configuration),

o But to be able to do that correctly, you’d have to read more information first to be able to update
the parity/ECC information.

o Unless of course you write a whole 32 kB-chunk at once.

➢ For reading data you can already benefit from the fact that data is on multiple disks that are read in
parallel

➢ Similar techniques are also used, e.g., to protect RAM memory in servers and supercomputers or
internally in flash memory drives

Problem 2: File system block size

➢ A file system organizes files in one or more “blocks”. They are the smallest element a file system can
allocate and manage.

➢ On a supercomputer that FS block size can be much larger than on a PC

o PC: used to be 512 bytes, but on current file systems often 4 kB.

o On a cluster, the block size is sometimes much larger (depending on the file system), e.g., 128 kB

▪ Large disks, small block size = too many blocks to manage efficiently.

▪ Larger “blocks” better fit with RAID (using multiple disks in a clever way to compensate for a failed
disk).

➢ So a 100-byte file will really occupy 128 kB on file system with 128 kB “blocks” (and a little more since
it also takes space in the file system table.

o Extreme case: User who used 642.5 kB to store what was really 36 bytes of data in his program: 4 FP
numbers and one integer and was not even storing the full precision of the FP number.

➢ Example: Previous UAntwerpen GPFS file system (now IBM Spectrum Scale), but also the VUB Hydra
service and possibly the next VSC Tier-1 system.

Problem 2: File system block size (2)

➢ Some systems (BeeGFS, Lustre) have a 2-level hierarchical architecture to deal with that.

o Storage distributed across many object storage targets/servers

o But each object storage target/server is more reasonably sized so can use smaller block sizes

o Hierarchical structure:

▪ File cut in chunks, Last chunk of a file may have a different size (but a multiple of the block size)

▪ Each chunk is stored in a number of blocks of a single object storage target

• Chunks of a file on the same object storage target are grouped (in a file)

• Example: chunk size of 1 MB, stored across 2 object targets: First megabyte on first OST, second
on second, third again in the same file on the first server, etc.

o Users may need to help the system to chose the right chunk size and number of object storage
targets used as the optimum depends on characteristics of both storage and file.

o And parameters in file I/O libraries should match those used by the file system.

➢ Both types of file systems sometimes have provisions for dealing with very small files.

Problem 3: Physics and the network

➢ Supercomputer storage sits much further from the CPU as the local drive on your laptop both
physically and logically

o Your program on your laptop can directly contact the file system of the OS and get the data from
the drive

o Shared networked storage adds layers and hence latency: network file system to network stack to
network stack on the server to network file system server to regular file system and then back.

▪ Parallel file systems may have a sligthly optimized and shorter route but it remains much longer
than to a local drive

➢ Consequences

o Programs that open and close hundreds of small files sequentially in a short time may work slower
than on a PC as your program will be waiting for data all the time

o Unpredictable file access patterns are also to be avoided as any logic to prefetch data and hide the
latency will fail

Problem 4: Metadata

➢ The directory contains information about each file: name, access rights, some type info, data and
time of creation or last access, …

o And a directory is also a special kind of file by itself.

o So if you do many small disk accesses or store a lot of files in a directory and access them
simultaneously, you’ll create a bottleneck because a lot of information in the directory needs to be
updated continuously.

➢ The typical problem scenario: A distributed memory application where each process creates a small
file in the same shared directory to write its data, rather than use parallel file I/O to read/write a
whole bunch of data in one multi-node file system operation.

o Try to do this on a 200k core cluster and you’ll be the system administrator’s best friend for sure.

➢ And equally stupid: Open a file before every read or write and close it again immediately.

Higher bandwidth through separation of data and metadata

➢ PC file system and many regular file server file systems:

o Each block on disk can be used for either metadata or data

o Flexible: small file sizes well supported

o But difficult to get very high bandwidth unless very expensive storage technologies are used
because of a single server per file bottleneck

➢ Supercomputers need a different kind of file system for high performance: a parallel file system

o BeeGFS (UAntwerp storage), Spectrum Scale/GPFS (e.g., VUB, UGent), Lustre (KU Leuven storage;
hortense; LUMI), Weka, VAST, …

o Separate metadata servers

▪ Still a potential bottleneck in metadata access

▪ Space determined at purchase, and often on fast and expensive storage

o Data / object servers for the data

▪ Once a file is opened, different processes of a parallel job can pump data in parallel to multiple
data/object servers

Higher bandwidth through separation of data and metadata

Login Compute Compute

Metadata server Data/object server Data/object server Data/object server

E.g., reading a file:

➢ Client queries MDS for file

➢ MDS returns location and
layout

➢ Client uses that information to
know which OSSes to talk to

➢ Client(s) requests file content
from the OSSes

o Multiple clients can talk to
multiple OSS simultaneously

Higher bandwidth through separation of data and metadata

➢ However:

o The bandwidth gain at the file level is only for large block read/writes in large files

o And the number of files is also limited by the space on the metadata drives

o Some metadata operations are more expensive

▪ Certainly true for opening and closing files

▪ On Lustre, ls -l is expensive too as it needs to talk to the object storage servers to compute the
size of a file

➢ So this storage is not suitable for working with lots of small files or opening and closing files all the
time

o Supercomputer centres are starting to enforcing limits on what users can do on their “fastest”
shared file systems!

A storage revolution?

➢ Our storage on the cluster is relatively slow

o Sustained joint bandwidth on /scratch on the order of 7-8 GB/s

o Comparison: The fastest SSD in my 8 year old PC at home gets 1.5 GB/s write, 2.5 GB/s read
bandwidth. Modern PC SSDs claim up to 14 GB/s read bandwidth when put in the right system
(very few processors can handle this) and accessed in the right way.

➢ So why don’t we use 120 big SSD drives rather than 120 hard disks for /scratch?

o Don’t expect 120 times 14 GB/s from such a setup unless you’re prepared to buy more storage
servers as the bandwidth a single server can deliver is limited

o Don’t expect 120 times 14 GB/s from such a setup unless you have proper file access patterns as
many problems persist even with SSD storage

o Moreover, there are two major problems with the SSD drives themselves…

Flash drives (January 2025)

Seagate
Exos X20

Seagate
Nytro 3750

Seagate
Nytro 3350

Samsung
990 Pro

Samsung
970 EVO Plus

Samsung
870 QVO

Technology Spinning
magnetic disks

3D eTLC
NAND flash

3D eTLC
NAND flash

TLC V-NAND
flash

TLC V-NAND
flash

QLC V-NAND
flash

Market datacenter
(SAS)

datacenter
(SAS 3.0)

datacenter
(SAS 3.0)

prosumer
(NVMe)

consumer
(NVMe)

consumer
(SATA)

Capacity 20 TB 3.2 TB 15.36 TB 4 TB 2 TB 8 TB

Read speed 0.28 GB/s 2.2 GB/s 2.1 GB/s 7.45 GB/s 3.5 GB/s 0.56 GB/s

Write speed 0.28 GB/s 1.8 GB/s 1.1 GB/s 6.9 GB/s 3.3 GB/s 0.53 GB/s

Latency 4,16 ms 50 µs ??? 50 µs ??? 50 µs ??? 50 µs ??? 100 µs ???

Endurance ? 58.4 PB 28 PB 2.4 PB 1.2 PB 2.88 PB

DWPD ? 10 1 0,33 0.33 0.2 (@5 year)

Data
written/day

? 32 TB/day
4h2m

15.3 TB/day
3h51m

1.32 TB/day
2m57s

0.66 TB/day
3m20 s

1.5 TB/day
50 m

Price 0.020–0.05 €/GB 0,82 €/GB 0,33 €/GB 0.075 €/GB 0.085 €/GB 0.062 €/GB

Is flash a storage revolution?

➢ Flash memory has

o A durability issue

▪ Current cheaper high-capacity flash chips can only handle 150-500 writes of every block of cells
(and the better ones maybe around 1000 writes)

o and a price issue: 10x regular hard disks in a cluster setup if you want good endurance

▪ the price does not improve anymore. Several drives on the table are now even more expensive
than one year ago.

➢ Unpredictable slow-down under random small write load when the drive starts to fill up

o Hard disks have a fragmentation problem that may reduce read and write speed, but contrary to
popular belief, flash-based SSDs are not at all better when it comes to such write operations.

Is flash a storage revolution? (2)

➢ At some point there was hope for better permanent memory technologies with much better write
endurance and better access properties than flash (byte-addressable as regular memory instead of
block-addressable) but development has stopped due to economic constraints

o 3D XPoint (Intel, Micron)

o memristor (HP, SanDisk)

➢ It looks like large database systems will be better served by RAM-on-CXL (big chunks of RAM but
connected through a longer distance connection with higher latency and lower bandwidth), and
battery backup.

o But I have doubts despite the claims of some vendors who talk about composable hardware that
this is a technology for HPC as our users have now already problems dealing with latency and
NUMA characteristics of memory

File system: To remember...

➢ Supercomputers like large files and large reads or writes. Just as with memory, streaming data to and
from a file is much faster than random access.

➢ Avoid writing many small files

o Running 1000s of small jobs, e.g., for a parameter study: Don’t keep many small files per run until
the post-processing phase, but accumulate the data right away in a large file

o And there are technologies to help with that, e.g., databases (e.g., SQLite3) and HDF5 files

➢ Avoid opening and closing files all the time as this involves additional metadata operations

➢ Use MPI-2 parallel I/O or libraries such as HDF5, netCDF, ADIOS or SIONlib (or look for codes that use
them) when working with large amounts of data

o Think of it as creating a hierarchy: the file can act as a kind of file system for the data that belongs
together.

➢ Avoid writing large text files. Binary files are as portable as text files nowadays, are more compact
and if one knows the data structures written to it, one can easily compute where in the file what data
should be, and reading and writing is a 100 times or more faster

File system: To remember... (2)

➢ Scaling capacity is cheap

o Often one only needs to add disk enclosures and disks, not so much servers, as there are drive
interfaces that scale to a very high number of disks (like SAS).

➢ Scaling bandwidth is harder and more expensive

o Adding disks is not enough, we need to add file servers too as each server has a finite bandwidth

o But a single application can only benefit if it exploits parallel I/O.

➢ Scaling I/O Operations (IOPS) is the most expensive

o Metadata access is much harder to parallelize, especially for access by a single user or to a single
directory

o Higher latency compared to an SSD in a PC because of additional layers of software and network
access limit sequential IOPS

o Higher total IOPS does not mean higher IOPS for a single threaded application with synchronous
file access!

2020 UAntwerp storage system

➢ Linux home directory is on flash storage but have a very small capacity allocation to users which helps
prevent abuse (roughly 3.5 TB)

➢ Disk volumes that are only written to by system managers are on flash storage: roughly 18 TB

o Mainly for applications

➢ Regular file system on hard drives (roughly 50 TB)

o Space for more permanent data and some special use cases

➢ A large parallel file system (BeeGFS) on hard drives (roughly 0.7 PB)

o 120 hard drives for the object storage

o SSD for the metadata

o Optimized for larger files and bigger writes. We do note that some metadata operations are
relatively expensive on this file system.

vscentrum.be

Supercomputers for Starters
February 2025

Kurt Lust – CalcUA, VSC and LUMI User Support Team

vscentrum.be

Supercomputers for Starters
Part 5: Putting it all together (summary session 1)

HPC
=

High-Performance Computing
≠

High-end Personal Computer

Scaling

➢ Performance of hardware parts of computers is characterised by many parameters

o Clock speed of a CPU

o Latency of connections and various subsystems (e.g., memory and disks)

o Bandwidth of various elements, compute capacity

o Power consumption of parts

➢ Not all these parameters are as cheap to scale or improve over time at the same rate

o Physical limitations have put a bound to improvements in CPU clock speed and latencies

o Speed of light and speed of signals in copper wires is finite

o Bandwidth growth of memory, disks and network connections tends to be slower than the growth
of quoted peak performance of a computer system

➢ As a result it is not possible to build a computer where all those parameters are 100x better than in a
PC or smartphone

o For some work a High-end PC is unbeatable because of its compact size and thin software layers as
it is a personal device

Dennard scaling

➢ For a long time, with every new generation of chip technology

o Linear dimensions decreased by 30%

o Surface dimensions decreased by 50%, i.e., transistor density doubled

o Power density remained the same (as voltage and currents are proportional to linear dimension)

o Circuit delays went down by 30%, so frequencies went up by 40%

➢ This broke down around 2006 though

o Not all dimensions of all elements scale as well, so transistor density does not grow as fast
anymore

o Threshold voltage of semiconductors becomes relevant

o Leakage power becomes dominant

o Clock frequencies don’t go up as fast anymore

Dennard scaling (2)

➢ As a result of the breakdown of Dennard scaling

o Chips have become very hot and power consumption of supercomputers a major concern

o Hardly any further speed increases just from further reducing component size

▪ So need to look harder for architectural improvements than before

o Part of the reason why latencies of various components do not improve anymore

➢ Transferring data at high speeds also requires considerable power

o Nowadays transfering two numbers from one end to the other end of a chip requires more power
than a computation with those numbers

➢ PCs already operate in the domain of Dennard scaling breakdown, so no hope for a single processor
that is much faster than that in a PC…

Cost per transistor

➢ Data from the Marvell 2020 Investor Day:

➢ Processors still become faster, but price/performance of computers isn’t improving as much anymore

➢ Need to find ways to do more work per transistor

o So more architectural innovations needed…

➢ Or use better software to get more out of our hardware budget

Keywords: Parallelism, hierarchy and streaming

➢ There are three keywords when developing software to obtain high performance

o And today those three keywords are relevant even for PCs

➢ Parallelism:

o Processor performance relies on parallelism through instruction level parallelism and vector/matrix
computing

o System level processing performance relies on parallelism through the use of multiple processors in
shared memory and distributed memory setup

o Memory performance in fact also relies on parallelism in memory accesses. A single core cannot
saturate the memory bandwidth of a modern system (not even on a PC)

o Storage performance relies on parallelism

▪ Multiple devices accessed simultaneously to reach high bandwidth (RAID, parallel filesystem)

▪ Processing multiple I/O requests simultaneously (and this is even more important for flash
memory than for hard disks)

o And this is not a new lesson

▪ Supercomputers have employed parallelism that needs programmer help since the ‘70s.

▪ PC’s: Vector computing since the mid ‘90s, multicore since 2006

Keywords: Parallelism, hierarchy and streaming (2)

➢ Hierarchy:

o Memory hierarchy: (typically) 3 levels of cache, then two or more levels of RAM memory

▪ AMD CPUs have an even more pronounced hierarchical structure than Intel CPUs

o Hierarchy in parallelism in processing:

▪ ILP and vectorisation at a very fine scale

▪ Shared memory parallelism

▪ Distributed memory parallelism

o Not yet discussed: GPUs also have a very hierarchical structure, both in hardware and low-level
programming models

o Expect storage to also become more hierarchical than it is today

▪ And storage formats such as netCDF, HDF5, ADIOS, …, already create a hierarchy

o Exploiting the hierarchy is important, as is a proper mapping of the parallelism hierarchy onto the
memory hierarchy

o And this is not a new lesson either. E.g., caches became an issue 40 years ago.

Keywords: Parallelism, hierarchy and streaming (3)

➢ Streaming:

o Getting data flowing smoothly through the memory hierarchy, all the way from permanent storage
to processing, is key to performance

o Data access should be in sufficiently large chunks

▪ so that effective bandwidth is not reduced too much by latency and

▪ so that no data in caches is wasted

o Data accesses should be predictable so that prefetching can work to further hide latency

o So random access to small blocks of data and to lots of small files is the worst thing you can do

o This is not a new message etiher, some level of streaming has been important since the ‘70s…

Andy and Bill’s law

➢ Context

o Andy Grove: CEO and later chairman of Intel, 1987-2004

o Bill Gates: CEO and chairman of Microsoft, 1975-2000

➢ In the ‘80s-‘90s the capabilities of microprocessors grew quickly

o Groves frustration was also that Bill Gates was so slow to exploit new features of his CPUs

➢ In the ‘90s performance of microprocessors grew so fast that efficiency of software became an
afterthought

o The rise of ever more goodlooking GUIs started in that era

o Software bloat with packages of which 90% of the people use only 10% of the features

➢ The scientific computing world suffers from similar issues…

What Andy giveth, Bill taketh away

Andy and Bill’s law (2)

➢ Variants for scientific computing:

▪

The rise of Matlab

▪

Languages that hide how data is treated such as Java

▪

Python also saw the light of day in the ‘90s though it only became more popular for scientific
computing around 2005

What Andy giveth, Bill taketh away

What Andy giveth, Cleve taketh away

What Andy giveth, James taketh away

What Andy giveth, Guido taketh away

Andy and Bill’s law (3)

➢ But we can no longer afford this attitude today:

o We cannot rely on further improvements of sequential speed to be able to solve ever bigger
problems.

o In fact, we can not even any longer rely on a fast increase of parallel performance/dollar.

o Languages that give us sufficient control over data storage and data flows, and where parallelism is
not an add-on, are important for performance.

➢ Need to go back to the time when everybody paid attention to good algorithms and to a proper
implementation

o In some fields of scientific computing performance improvements have come as much from better
numerical methods as from faster computers…

o Also in the future much performance improvements will have to come from better software.

o Quantum computers and optical computers will not save the world anytime soon

What Andy giveth, Bill taketh away

Supercomputing is about software, not hardware

➢ ‘60s- ‘70s: smaller slower computers and bigger faster computers

➢ ‘70s-’80s: vector computing: Now programming techniques for supercomputers started to differ from
those for regular (non-vector) computers, but supercomputer hardware was very specialised

➢ ‘80s- ‘90s: Supercomputers built from variations of standard components to reduce costs, the
software made the supercomputer

➢ This is more true than ever before

o Supercomputers try to minimize the hardware costs more than ever

o by using cleverly designed software to turn fairly standard hardware in a powerful computer

o within limits of course as a certain level of reliability is needed.

o This again stresses the importance of proper software at all levels (system software and application
software) on supercomputers!

Supercomputing is about software, not hardware (2)

➢ Supercomputers focus on different aspects than cloud infrastructures

o Focus on latency and staying close to “bare metal” rather then isolation, security and personal
environment

o Focus on those aspects of scalability that enable capability computing rather than fine grained user
control and management

o Focus even more on hardware cost reduction than cloud infrastructures

o Different exploitation model focussing on shared storage, on freeing resources for other users as
soon as possible rather than long-term reservations for a particular user, and on starting the next
task as fast as possible

▪ Though this is also partly caused because supercomputer resources are often allocated “for free”
after a competition so there is no incentive for a user to think economically

Assembling the cluster: Access and admin part

Login nodes

Admin nodes

➢ UA cluster Vaughan

➢ Really nothing special, just regular servers

Assembling the cluster: Storage

Disks for scratch space

Various types of disks

File servers for NFS

More disks for scratch space

File servers for scratch space

➢ Standard server

➢ High-quality storage very
popular in IT services

➢ /user, /apps, /data

➢ Cheap array of 60 disks

➢ Standard server

Assembling the cluster: Compute nodes

24 compute nodes

Switch for interconnect

➢ 4 compute nodes in the space of 1
server for storage or login nodes

➢ Groups of 24 compute nodes

➢ Switch connects to 24 compute
nodes and to “top-level” switches
that in turn connect switches

Older set of 24

compute nodes
➢ See next slide for the node

Assembling the cluster: An (older) cluster node

CPU + (passive) cooler

memory DIMM

interconnect

hard disk for local storage

The complete cluster

cooler

24 compute nodes

cooler

➢ Older picture of the first VSC Tier-1
cluster, but it better shows the
structure

The complete cluster (2)

coolers

A real supercomputer: Cray EX (LUMI)
➢ Switches

o 2 network ports/blade

o 48 ports facing outside

➢ LUMI-C: CPU nodes

o 4 nodes/compute blade

o 2 CPUs/node

o 1 network port/node

o 2 switch blades/chassis

➢ LUMI-G: GPU nodes

o 2 nodes/compute blade

o 1 CPU & 4 GPUs/node

o 4 network ports/node

o 4 switch blades/chassis

o 5 kW per blade, >300 kW per cabinet

A real supercomputer: Cray EX (LUMI)

CPU node blade GPU node blade

A real supercomputer: Cray EX (LUMI)

A real supercomputer: Cray EX (LUMI)

Comparison: Cray-2

➢ Cray-2 bought by the University of Stuttgart in 1986

➢ One of the fastest machines in the world when installed, and
still managed to appear at place 250 in the first Top-500 list
(June 1993), though the fastest machine in that list was 40
times faster

➢ Roughly 240,000 chips of which 75,000 memory, spread over
750 packages

➢ Power consumption close to 200 kW = <2x CalcUA

➢ Power consumption roughly 1% of the current fastest
system

➢ Special immersion cooling system

➢ Cost on the order of 40-50M$ in 2023 dollars, just under 10%
of today’s exascale computers

vscentrum.be

Supercomputers for Starters
Part 6: Middleware: Turning the hardware into a usable supercomputer

Why?

➢ In this section we focus on the software development paradigms

➢ A supercomputer is more than some hardware + Linux

➢ In fact, there is a lot of additional software to turn the hardware + Linux into a supercomputer

o And much of that is part of the programming environment.

➢ API (library functions, …) often standardised, but the ABI (binary interface) is not

o As a result, mixing compilers can be a problem,

o and getting precompiled binaries to run is sometimes impossible if they were compiled for a
different machine

➢ You have to realise that that software that sits between your application and the hardware

o has to be ABI or API compatible with your application, and

o has to be compatible with the hardware and OS kernel drivers/extensions,

o and hence that software that comes as binaries can be problematic.

I’m not a programmer, should I know this?

Why?

➢ In this section we focus on the software development paradigms

➢ Many scientific applications come as source code.

o Helps to judge whether the code is ready for modern hardware

o Helps to figure out which components you’ll need on the cluster

➢ It also affects the way you start programs

o Start through another program (e.g., almost all distributed memory programs)

o May need some environment variables to tune the performance (e.g., shared & sometimes
distributed memory programs)

➢ And we can no longer do all software installations for you, there is just too much code with low-
quality installation scripts thrown at us.

I’m not a programmer, should I know this?

Shared memory

➢ Automatic shared memory parallelisation not very successful

➢ OpenMP compiler directives:

o A compiler directive is a hint placed in the code in such a way that it should be neglected by
compilers that don’t know the pragma

▪ C: #pragma

▪ Fortran: Look like comments

o Data-parallel (= each thread works on a part of the data) and
task-parallel (= each thread works on a different task)

o Standard since 1997, not vendor-specific, now at version 6.0 (since November 2024)

o OpenMP 4 was a major revision introducing support for vectorisation and for offload to
coprocessors (typically GPU)

o Influence the runtime behaviour (number of threads, mapping on cores) through environment
variables and/or a small set of library calls

o Supported by the two main compilers in use at the VSC (Intel and GCC)
Supported by all compilers on LUMI (GCC, AMD aocc/ROCm, Cray)

Shared memory

➢ C++: Frameworks such as (Intel) Thread Building Blocks

o Intel TBB is open-sourced and can be used with other compilers also

➢ Some languages have thread concepts or other concurrent processing concepts built into the
language or its standard runtime library

o Java: But forget about Java for distributed memory systems

o C#: Microsoft environment, not really used on supercomputers

o Go: Language from Google (but not suitable for supercomputers due to its poor memory
management)

o Julia (Matlab/Python alternative with better performance): Threading still evolving

➢ Use explicit OS threading, especially for task-based parallelism

o Linux supports the POSIX standard in the Pthreads library

o Low-level and cumbersome as you have to do all thread management by hand

Vector computing

➢ Automatic vectorization in compilers is moderately successful.

➢ Vendor-specific compiler directives

o Work only with that vendor’s compiler.

➢ Standard for directives: OpenMP 4.0 (and later versions)

o Many consider OpenMP 4.0 pragmas worse than the vendor-specific ones, but improvements are
being developed.

o Work with any compiler that supports the standard.

o Major criticism: Too much prescriptive instead of descriptive, but 5.0 is a big improvement in this
respect

➢ Use good libraries for your work (e.g., BLAS, FFTW, image processing, …)

o See the demo later in this course!

➢ Using compiler vendor & CPU-specific intrinsics and additional data types in C/C++/Fortran that
translate into vector instructions

o Use with care as you loose portability but could be an option for intensely used kernels.

Distributed memory

➢ Automatic strategies through the compiler never made it past the research phase

➢ Explicit communication through messages most successful model

o MPI library is the most successful one

o MPI is standardized (current version: 4.1). This implies that software that compiles with one MPI
library should also compile with any other MPI library adhering to the same version of the standard
(unless it relies on a specific bug).

o Many MPI programs skip the shared memory level, using 1 process per hardware thread, but on
modern CPUs it may be more efficient to combine MPI with one of the shared memory
programming techniques (most often OpenMP) – e.g., 1 process per node, socket, NUMA or cache
domain
⇒ Hybrid MPI/OpenMP applications, e.g., QuantumESPRESSO, Gromacs, VASP

o We support 2 MPI implementations on the UAntwerp clusters (and some vendor-specific ones on
special machines)

Distributed memory

➢ Some languages have distributed memory concurrent computing built into the language, e.g., Julia
(Matlab/Python alternative), Charm++

➢ Partitioned Global Address Space (PGAS) programming languages

o Distinguish between local and remote memory but allow to use the latter almost as if it is local
memory

o And it is up to the compiler to translate that in messages for the underlying
hardware/OS/middleware combination

o Fortran-derived language: Co-array Fortran, now part of Fortran 2008.
Supported in the (classic) Intel compiler

o C99-derived language: UPC (Unified Parallel C), not part of any standard

o “New” language: Cray Chapel

o But performance often sucks

o Therefore sometimes used together with MPI in a hybrid code

o SHMEM/OpenSHMEM, GASPI and single-sided communication in MPI-2 are library approaches
based on the same idea

o So far limited popularity (except probably one-sided MPI communications)

Example applications

➢ QuantumESPRESSO:

o Hybrid MPI/OpenMP program

o Configuration determined through command line options and environment variables

o Scales quite well when used in the right way

➢ GROMACS

o Some modules are hybrid MPI/OpenMP

➢ SAMtools (bio-informatics)

o Tend to run single-core by default, but if you check the manual you’d see it can actually exploit
shared memory parallelism

o And this is configured through command line options

vscentrum.be

Supercomputers for Starters
Part 7: What can we expect?

Speed-up

1

2

4

8

16

32

64

128

1 2 4 8 16 32 64 128Cores

Ideal

Amdahl

Saturation

Assumes 99% of the application can be
parallelised, no communication
overhead and a perfect load balance.

More realistic model accounting
for communication

64 or 128 processors doesn’t
make sense for this case.

8 to 16: Twice the cost for
only 35% extra performance
rarely worth the cost.

Sweet spot for this
particular problem

➢ Or: how much can you gain by supercomputing?

➢ Using 100 processors should mean your job runs a 100 times faster, right?

Speed-up

➢ Using X processors will (almost) never speed up your application with a factor X.

o There is always some overhead in using multiple cores.

o There are rare cases though where you may see what is called a superlinear speedup due to cache
effects (more cores and nodes = more cache for your program).

➢ There is no rule like program A runs best on X cores.

o X depends not only on the application,

o It also depends on the cluster: CPU characteristics, interconnect, …

o But also on the problem being solved. The larger the problem, the larger the optimal number of
cores.

➢ Bigger problems = better speed-up

Illustration: Matrix multiplication
Illustrating cache effect and speedup

Matrix multiplication

∙ ∙ ∙ ∙
∙ ∙ ∙ ∙
∙ ∙ ∙ ∙
∙ ∙ ∙ ∙

+=

∙ ∙ ∙ ∙
∙ ∙ ∙ ∙
∙ ∙ ∙ ∙
∙ ∙ ∙ ∙

∙ ∙ ∙ ∙
∙ ∙ ∙ ∙
∙ ∙ ∙ ∙
∙ ∙ ∙ ∙

𝑐𝑖,𝑗 +=෍

𝑘

𝑎𝑖,𝑘𝑏𝑘,𝑗

for i = 1 to N
 for j = 1 to N
 for k = 1 to N
 c(i,j) = c(i,j)+a(i,k)*b(k,j)

ijk-variant

for j = 1 to N
 for i = 1 to N
 for k = 1 to N
 c(i,j) = c(i,j)+a(i,k)*b(k,j)

jik-variant

C += A * B

6 variants of matrix multiplication C = C + A*B

ijk
for i = 1 to N
 for j = 1 to N
 for k = 1 to N
 c(i,j) = c(i,j)+a(i,k)*b(k,j)

jik
for j = 1 to N
 for i = 1 to N
 for k = 1 to N
 c(i,j) = c(i,j)+a(i,k)*b(k,j)

ikj
for i = 1 to N
 for k = 1 to N
 for j = 1 to N
 c(i,j) = c(i,j)+a(i,k)*b(k,j)

kij
for k = 1 to N
 for i = 1 to N
 for j = 1 to N
 c(i,j) = c(i,j)+ a(i,k)*b(k,j)

jki
for j = 1 to N
 for k = 1 to N
 for i = 1 to N
 c(i,j) = c(i,j)+ a(i,k)*b(k,j)

kji
for k = 1 to N
 for j = 1 to N
 for i = 1 to N
 c(i,j) = c(i,j)+ a(i,k)*b(k,j)

Fortran timings

➢ GNU Fortran, matrix size 2500x2500 (47.7MB/matrix),
1 core of Xeon E5-2680v2 = 22.4 Gflops @ 2.8 GHz

Variant Time (s) Gflops

ijk 17.16 1.821

jik 24.35 1.283

ikj 63.68 0.491

jki 9.87 3.165

kij 40.77 0.766

kji 13.29 2.352

➢ To explain these results: Look at memory accesses

o Fortran stores arrays column by column

×6.5

×7.7

F95 MATMULT 9.51 3.285

OpenBLAS dgemm (1 thread) 1.27 24.60

OpenBLAS dgemm (20 threads) 0.08 396.42

jki-variant

for j = 1 to N

 for k = 1 to N

 for i = 1 to N

 c(i,j) = c(i,j)+ a(i,k)*b(k,j)

c(:,j) = c(:,j) + a(:,k)*b(k,j)

Works with column vectors

∙ ∙ ∙ ∙
∙ ∙ ∙ ∙
∙ ∙ ∙ ∙
∙ ∙ ∙ ∙

+=

∙ ∙ ∙ ∙
∙ ∙ ∙ ∙
∙ ∙ ∙ ∙
∙ ∙ ∙ ∙

∙ ∙ ∙ ∙
∙ ∙ ∙ ∙
∙ ∙ ∙ ∙
∙ ∙ ∙ ∙

Inner loop for j = 2, k = 3:

i=1: c(1,2) = c(1,2) + a(1,3)*b(3,2)

i=2: c(2,2) = c(2,2) + a(2,3)*b(3,2)

i=3: c(3,2) = c(3,2) + a(3,3)*b(3,2)

i=4: c(4,2) = c(4,2) + a(4,3)*b(3.2)

jki-variant

for j = 1 to N

 for k = 1 to N

 for i = 1 to N

 c(i,j) = c(i,j)+ a(i,k)*b(k,j)

∙ ∙ ∙ ∙
∙ ∙ ∙ ∙
∙ ∙ ∙ ∙
∙ ∙ ∙ ∙

+=

∙ ∙ ∙ ∙
∙ ∙ ∙ ∙
∙ ∙ ∙ ∙
∙ ∙ ∙ ∙

∙ ∙ ∙ ∙
∙ ∙ ∙ ∙
∙ ∙ ∙ ∙
∙ ∙ ∙ ∙

Inner two loops for j = 2:

k=1: c(:,2) = c(:,2) + a(:,1)*b(1,2)

k=2: c(:,2) = c(:,2) + a(:,2)*b(2,2)

k=3: c(:,2) = c(:,2) + a(:,3)*b(3,2)

k=4: c(:,2) = c(:,2) + a(:,4)*b(4,2)

A column by column

Single column of B

Single column of C, accessed N times

How can BLAS be even faster?

➢ What is BLAS?

o Basic Linear Algebra Subprograms

o Basic building block for several other libraries, including Lapack (solving linear systems and
computing eigenvalues)

o BLAS 1 (1979) defined vector operations to exploit vector computers

o BLAS 2 (1986) added matrix-vector operations

o BLAS 3 (1988) added matrix-matrix operations to better exploit a memory hierarchy

➢ The DGEMM code in BLAS is significantly more complex than ours: Matrix is split in small blocks that
fit in cache and the matrix-matrix product is computed out of the matrix-matrix products of the
smaller blocks

o And some libraries may even involve assembler programming

➢ Blocking for cache reuse is a strategy used by many libraries

Matrix 2500x2500
Method

GNU Fortran
Gflops

Intel Fortran
Gflops

ijk 1.82

jik 1.28

ikj 0.49

jki 3.17

kij 0.77

kji 2.35

F95 MATMULT 3.29

BLAS dgemm (single-threaded) 24.60

BLAS dgemm (20 threads) 396.42

Matrix 2500x2500
Method

GNU Fortran
Gflops

Intel Fortran
Gflops

ijk 1.82 1.60

jik 1.28 3.40

ikj 0.49 1.60

jki 3.17 3.40

kij 0.77 10.74

kji 2.35 10.68

F95 MATMULT 3.29 10.97

BLAS dgemm (single-threaded) 24.60 24.75

BLAS dgemm (20 threads) 396.42 417.64

And a little surprise...

➢ The Intel compiler is clever enough to reorder the inner two loops for optimal memory access in many cases.

➢ The Cray Fortran compiler can do even better and replaces some variants with a BLAS dgemm call.

Matrix 2500x2500
Method

GNU Fortran
Gflops

Intel Fortran
Gflops

ijk 1.82 1.60

jik 1.28 3.40

ikj 0.49 1.60

jki 3.17 3.40

kij 0.77 10.74

kji 2.35 10.68

F95 MATMULT 3.29 10.97

BLAS dgemm (single-threaded) 24.60 24.75

BLAS dgemm (20 threads) 396.42 417.64

Matrix 2500x2500, variant Time (s) Gflops

ijk

jik

ikj

jki

kij

kji

F95 MATMULT

OpenBLAS dgemm (1 thread)

OpenBLAS dgemm (2 threads)

Matrix 2500x2500, variant Time (s) Gflops

ijk 297.40 0.105

jik 295.53 0.106

ikj 1002.28 0.031

jki 11.67 2.678

kij 1002.48 0.031

kji 15.85 1.971

F95 MATMULT 17.06 1.832

OpenBLAS dgemm (1 thread) 3.42 29.979

OpenBLAS dgemm (2 threads) 1.80 57.349

On a laptop

➢ This laptop (an older Intel Broadwell one) has less cache than a cluster CPU (even when counted per core)
and fewer channels to memory. This explains the greater sensitivity to the correct memory access order.

×86

×967

Scaling: Speedup

➢ Anomaly for 20 cores, probably due to interference with background work (operating system)

➢ Given number of cores: Speedup increases as problem size increases.

0

2

4

6

8

10

12

14

16

18

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

cores

Speedup OpenBLAS DGEMM

1000

2500

10000

25000

Scaling: Efficiency

➢ Efficiency = speedup / # of cores

➢ Given number of cores: larger problem = higher efficiency

➢ Given problem size: more cores = lower efficiency

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

cores

Efficiency OpenBLAS DGEMM

1000

2500

10000

25000

And another surprise…

➢ The job runs faster than we would expect based on the nominal clock speed of the node.

➢ This is due to something called “turbo boost” by Intel: If the CPU runs cool enough, it is clocked
higher (was enabled on that node, but disabled on leibniz and vaughan)

0%

20%

40%

60%

80%

100%

120%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

cores

Efficiency w.r.t. theoretical peak @ nominal clock speed

1000
2500
10000
25000

Demo conclusions

➢ Not all codes are created equal, even if they implement the same operation/algorithm.

➢ Don’t try to reinvent the wheel. It is very likely that there are already good libraries that you can use,
or even a complete code for your problem, that is much better written than anything you can come
up with in a short time.

➢ Pay attention to the order of memory accesses and exploit the memory hierarchy (even though some
compilers can sometimes correct your mistakes)

➢ Scaling of code:

o Fixed problem size: More cores = lower efficiency in most cases

o Fixed number of cores: Bigger problem = higher efficiency in most cases

➢ On a modern computer system, benchmarking has become very difficult as there are so many
unexpected elements that can influence performance in sometimes unpredictable or unexpected
ways.

vscentrum.be

Supercomputers for Starters
Part 8: Accelerators

Accelerators

➢ Accelerator is (usually) a coprocessor

o Accelerates selected computations that could be done on a CPU, but cannot replace the CPU

o Used to free the CPU from other work that could be done better in a specialised processor and
popular in very large computer systems such as mainframes

➢ Accelerators appeared in the PC world also in the ‘90s

o High-end sound cards had a processor specialised for signal processing algorithms (DSP)

o Graphics cards were originally very specialised and not really programmable hardware but in the
early 00’s became programmable also (NVIDIA GeForce 3, ATI Radeon 9300).

o It didn’t take long before scientists started experimenting with using that programmability to
accelerate certain scientific computations. Manufacturers started adding features specifically for
broader use and CUDA 1.0 was born in 2007.

o As supercomputer developers are always looking for more speed at lower power, GPU computing,
renamed GPGPU computing, became popular.

➢ As a GPU (and other accelerators) are coprocessors, it requires complicated programming with a host
program and routines that are offloaded to the accelerator

Types of accelerators

➢ Vector computing: Basically all modern “GPU”s, and then some others

o NVIDIA Data Center series

▪ Initially a more reliable version of the NVIDIA GeForce/Quadro GPU,

▪ but evolving into a different product line, especially clear with the GPUs launched in 2022: Hopper
for compute and Ada Lovelace for graphics.
Hopper and Ada Lovelace are specialised implementations for different workloads with a common
underlying architecture.

o AMD (Radeon) Instinct GPUs: Separate architecture: CDNA, not RDNA (but working towards a unified
architecture again, UDNA, with specialised implementations for different workloads)

o Intel is moving into that market also with the Intel Data Center GPU MAX (XeHPC architecture)

o NEC SX Aurora TSUBASA more and more used as an accelerator also

Types of accelerators (2)

➢ Matrix operations: rank-k update or matrix-matrix multiplication

o Motivated by operations in neural networks, but when done well useful for linear algebra also

o NVIDIA: Tensor cores in the V100 and later chips

o AMD: Matrix cores in the MI100 and later CDNA chips

o Intel: Matrix engines in the Data Center GPU MAX (Ponte Vecchio)

o Google TPU (Tensor Processing Unit)

➢ FPGA: Programmable logic, “build your own custom processor”

o E.g., could build a specialised 2-bit processor to work with genetic data

Types of accelerators (3)

➢ The name GPU has become misleading as the latest generation compute “GPUs” don’t support full
hardware graphics acceleration anymore

o E.g., no ray tracing units in either NVIDIA Hopper or AMD MI100/MI200/MI3XX (Intel still has them in
the GPU code named Ponte Vecchio)

o Other graphics-only units more and more removed also

▪ raster engine: Seems gone in NVIDIA Hopper H100 and AMD MI100/200/3XX

▪ texture units

• Present on NVIDIA Hopper but seem missing on AMD MI200

▪ Video decode preserved for AI.

• Encoding seems missing on H100

➢ So there is a growing distinction between compute GPUs for traditional HPC and AI, and rendering
GPUs for visualisation and image generation

Offloading to accelerators

➢ Most common model:

o As CPU and accelerator don’t have access to each others work memory you need to copy data
between the memory spaces (and multiple times if both CPU and accelerator need the data
interchangeably)

o Multiple accelerators in a system may or may not share a memory space (NVIDIA NVLINK is a
technology to share memory in a NVIDIA GPU system)

o Pass control from the main program to the accelerator to execute code that can be accelerated

➢ Remember Amdahl and how communication overhead further restricts speed-up? For accelerators
one has:

o Not all code can be accelerated, so this will limit the speedup that can be obtained from an
accelerator

o Transfers between memories (even if they can to some extent overlap with computations) further
limits the gains that can be obtained

Offloading to accelerators

➢ If the amount of data that has to be copied is too large compared to the amount of computations
that will be done with that data, we can even have a slowdown…

➢ Funny detail: Integrated GPUs in Intel and AMD PCs

o CPU and GPU actually don’t share memory spaces even if both use the same system RAM memory
but have their reserved memory spaces (one exception: see next slide)

o So data still needs to be copied between both memory spaces

Offloading to accelerators (2)

➢ But this is about to end:

o Hardware extensions for a software-managed unified address space since NVIDIA P100

o USA pre-exascale systems based on IBM POWER CPU and NVIDIA GPU have NVLINK also between
the CPU and GPU

▪ So CPU and GPU share a memory space

▪ Making it effectively more of a NUMA machine, one still needs to be careful where to store which
data

o Some recent Apple A1x processors and the M–series are said to have a fully unified memory space
between the CPU and the various accelerators

▪ It’s not only the very superscalar core that makes the M-series so fast. Its astonishing
performance in photo- and videoprocessing apps comes from the accelerator architecture

Offloading to accelerators (3)

➢ Current examples in supercomputing

o AMD: Special version of the Epyc CPU with the MI250X GPUs have unified and partially cache
coherent memory (Frontier USA exascale system, EuroHPC LUMI system)

o Intel Xe “Ponte Vecchio” for 2022 Aurora supercomputer has unified and coherent memory

o NVIDIA is has its own CPU (Grace) to work with its GPUs (Hopper and Blackwell) (EuroHPC JUPITER
exascale system: Grace-Hopper)

▪ CPU and one or two GPU dies in the same packages, with fast connections between them

o AMD MI300A for the El Capitan supercomputer (currently #1): CPU and GPU dies use the same
high-bandwidth memory

CPUs with accelerator features

➢ Succesful accelerators were often integrated in CPUs, and this process is still going on

o Vector accelerators:

▪ Early vector instructions in Intel CPUs designed to compete with DSP

▪ AVX-512 has its roots in a failed GPU

▪ Fujitsu A64fx (used in one of the fastest computers in the world) uses vector instructions and a
GPU-like memory architecture to reach near-GPU speeds in many applications

o Matrix accelerators

▪ IBM POWER10 has matrix instructions for deep learning in AI and for linear algebra

▪ Intel has some too in some CPUs but only for low-precision inference and added a new
instruction set called AMX in Sapphire Rapids (int8/bfloat16) and an FP16 extension in Granite
Rapids.

▪ ARM V9.2-A adds Scalable Matrix Extensions for AI (int8/bfloat16)

➢ Interesting if even passing control to a coprocessor causes too much overhead

o And can be programmed using the regular programming models

Accelerators
Where can you find them?

➢ UAntwerp: Small system (two nodes) for the first tests with NVIDIA P100, one node with 4 A100 GPUs
and NVLINK and 2 servers with two AMD MI100 boards

➢ Production system for the VSC in Leuven (integrated in Genius) with NVIDIA GPU, mostly P100 with
NVLINK, and 4 quad A100 and 4 quad H100 nodes in the wICE cluster

➢ UGent has 10 nodes with quad NVIDIA V100 and 9 nodes with quad A100

➢ VUB has 4 nodes with dual NVIDIA P100 GPUs and 10 with dual A100 GPUs

➢ VSC Tier-1 system with 40 quad A100 nodes

➢ EuroHPC pre-exascale system LUMI meant for very large tasks

o 2978 nodes with 4 AMD MI250X GPUs and 1 AMD Trento CPU

o Almost 50 Tflops vector or 100 Tflops matrix performance in FP64 per GPU

o Access via EuroHPC proposals and a Belgian programme as Belgium also invested in the machine

➢ More large GPU systems available available via EuroHPC (also NVIDIA)

Accelerator programming

➢It’s a mess at the moment
➢ 3 main competing ecosystems

o NVIDIA ecosystem:

▪ Largely proprietary to protect their market

▪ Some support for open standards, but limited

o AMD: Latecomer so open sourced their ROCm software stack

o Intel: oneAPI initiative

▪ Partly based on open standards

▪ Partly open-sourced (in some cases only the API)

Accelerator programming:
Low-level

➢ Separate code for host and accelerator device

➢ NVIDIA CUDA probably the best-known environment in the HPC world

o But proprietary NVIDIA so code is not very portable to other environments

o CUDA C/C++/Fortran are subsets of these languages to develop offloaded code

o And a large library of routines for popular tasks in scientific computing

➢ HIP – Heterogeneous-Computing Interface for Portability

o CUDA-clone from AMD (but only the C/C++-based part)

o Roughly at the level of CUDA 7 and 8

o One-to-one match between HIP functions and CUDA functions

▪ So works without loss of performance on NVIDIA

o Allows to port CUDA code to AMD GPUs

o Support for Intel GPUs through non-AMD projects (chipStar, based on HIPCL and HIPLZ)

Accelerator programming:
Low-level

➢ OpenCL

o Vendor-neutral standard controlled by the Khronos Group

o Works on GPUs from most vendors, some CPUs, some DSPs and even some FPGA systems, so your
code is portable (though may require some tuning for other hardware)

▪ This makes it very attractive for commercial software development

o Not as advanced as CUDA though

o Kernels in subset of C or C++

o Also in AMD ROCm stack and Intel oneAPI stack, and supported by NVIDIA

o Khronos Group itself is pushing users to higher-level models; newer parts of the standard not often
implemented

o Khronos Group itself is pushing users to a newer technology, SYCL.

Accelerator programming:
Compiler directives

➢ OpenACC

o First successful compiler directive model for GPU computing

o Single code for host and accelerator, the compiler does the hard work of organising the offloading

o Open standard, though it looks that in practice it is very much controlled by NVIDIA

o Compiler support

▪ Commercial: Currently only NVIDIA. HPE Cray only in their Fortran compiler

▪ Growing support in GCC, but only for some GPUs

▪ Will likely also come in the Clang/Flang/LLVM ecosystem with the help of the USA exascale
projects and NVIDIA, but currently (LLVM 19) this support is very unfinished

o Currently at version 3.3 (released November 2022) and development of the standard has slowed
down

Accelerator programming:
Compiler directives

➢ OpenMP 4.0/4.5/5.0/5.1/5.2/6.0

o Similar way of working as OpenACC, but based on the typical OpenMP constructs

o Younger and thus far less mature than OpenACC

o More vendors actively involved in the standardisation process

o OpenMP 5.0 released at SC’18 in November, 5.1 at SC’20, 5.2 at SC’21 and 6.0 at SC’24

▪ Improved support for debuggers, performance monitoring tools, etc.

▪ More descriptive, less focus on prescriptive

▪ Much improved support for accelerators, partly triggered by pre-exascale systems

o OpenMP offload support in recent GNU some recent Clang/LLVM builds

o AMD ROCm and Intel oneAPI stack, also support in the NVIDIA compilers

GPU programming:
C++ extensions

➢ SYCL

o Standard controlled by the Khronos Group

o Really more a C++ 17 header library, but requires a SYCL-aware compiler for good code quality

o Clear influences from OpenCL

o Multiple compilers (often based on Clang/LLVM)

➢ Intel DPC++ (Data-Parallel C++) in oneAPI

o Intel implementation of SYCL, though originally more an extension of SYCL

o Intel implementation on top of LLVM

o Plan to push upstream to Clang/LLVM repository

o Implementation for NVIDIA and AMD by CodePlay, now acquired by Intel

➢ C++AMP (Accelerated Massive Parallelism)

o Microsoft-developed but open specification

o C++ library + one small extension to the language

o Deprecated

GPU programming:
Frameworks

➢ Frameworks/abstraction libraries

o Create code that is portable to regular CPUs and GPUs of various vendors (and sometimes other
types of accelerators)

o C++-based

o Develop code that exploits all levels of parallelism except distributed memory.

o Examples:

▪ Kokkos by Sandia National Labs – NVIDIA and AMD, but Intel GPUs still experimental. It is the
most extensive of the three mentioned here.

▪ Raja by Lawrence Livermore National Laboratory – CUDA, HIP, SYCL and OpenMP offload
backends for GPU

▪ Alpaka by CASUS Center for Advanced Systems Understanding, Helmholtz Zentrum Dresden
Rossendorf – CUDA, HIP and SYCL (Intel only) backends for GPU.

GPU programming:
Libraries

➢ You may be able to find a library for your needs that does the computations on a GPU…

o NVIDIA CUDA ecosystem has a lot of libraries for various application domains

o Intel has adapted all its libraries for its (and others) upcoming GPUs and other accelerators

▪ Subset of the API for both CPU and GPU, part of the oneAPI spec

o HPE Cray have accelerated versions of some of their LibSci routines for NVIDIA and AMD GPUs,
selecting automatically between CPU and GPU versions (LUMI supercomputer)

o AMD open-sources many of its libraries in the ROCm stack

o Vendor-neutral libraries

▪ MAGMA (Matrix Algebra on GPU and Multicore Architectures) is an early example

▪ heFFTe is another example

➢ The ideal library supports both accelerated and CPU computing

Status of GPU computing

➢ Subject to benchmarketing: Overhyped with incomplete benchmarks (only benchmark the part that
you can accelerate), marketing by numbers (redefine common terms to get bigger numbers), …

o Accelerator performance per dollar isn’t improving much anymore for many types of computations

o The NVIDIA vendor lock-in and its success in the market made accelerators even more expensive

o Only make sense if the speed-up at application level is a factor of 2.5 per accelerator card
compared to a standard medium-sized dual socket node

➢ Yet by many seen as the future of supercomputing

➢ Accelerator features carry over to traditional CPUs and may be a better choice in some cases as CPUs
have more memory available and programming is easier

o There are problems were such a CPU may be the most economical solution!

➢ Remember the death of traditional vector computing…

Status of GPU computing: Problems and solutions

➢ Limited memory: Fast memory needed, so small amounts of memory (48GB in 2020, 80 GB in early
2021, 128 GB in 2022, 192-256 GB in 2024)

o Solution: Packaging improvements: More and larger memory stacks. 384 GB by 2025 or 2026?

➢ Programming difficulty: Separate memory spaces so lots of organising of copying back and forth
between CPU and GPU memory

o Solution: GPU sharing a memory space with CPU (cache-coherent and virtual memory space)

▪ Hardware accelerated software managed solution as a stopgap in most modern GPUs

▪ Already on some older NVIDIA GPUs with IBM POWER CPU

▪ Appearing on other supercomputers

• AMD MI250X in Frontier (USA exascale) and LUMI (EuroHPC pre-exascale)

• Intel in Aurora (USA exascale system) with Sapphire Rapids CPU and Ponte Vecchio GPU

• NVIDIA in 2024: Grace CPU and Hopper GPU

▪ May make a NUMA-like memory model a reality and make it cheaper to transfer control between
CPU and GPU as data copying may not always be needed

▪ Extreme form: AMD MI300A (El Capitan), rumoured in Apple M-series system-on-chip

Status of GPU computing

➢ Link to the CPU is the bottleneck

o Solution: Very close integration of CPU and GPU in a single package or on a single die so that CPU
and GPU can have a very wide and fast connection and can share a single physical memory space.
See, e.g., the NVIDIA Grace Hopper “superchip” or even more advanced, the AMD MI300A.

➢ Rather slow for serial code, so you often must use the host

o This is mostly an issue because transferring between the fast scalar core in the CPU and the fast
vector and matrix cores in the GPU is too expensive

o Solution: Closer integration of CPU and GPU physically (distance) and logically (shared unified
memory space) to make passing control between CPU and GPU as cheap as possible. See, e.g., the
AMD MI300A.

2016 GPU node

CPU CPU

GPU GPU

memmem

memmem

A quad-GPU A100 supercomputer node

mem

mem

CPU CPU

GPU GPU

memmem

mem

GPU GPUmem

Towards exascale: AMD MI250X in LUMI and Frontier

mem

mem

mem

CPU

mem

mem

GPU GPU

GPU GPU

“GPU first” system with fully

unified memory

NVIDIA Grace Hopper GH200

CPU

GPU M

MM

M

CPU

GPU M

MM

M

CPU

GPU M

MM

M

CPU

GPU M

MM

M

Switch

AMD MI300A – El Capitan and Hunter

mem

mem

CPU

mem

mem

GPU GPU

GPU GPU

CPU CPU

CPU

➢ USA: El Capitan
European system with a similar architecture: Hunter (HLRS), precursor to a future exascale system

➢ Intel was working on something similar, but it is not clear if and when this will ever emerge

vscentrum.be

Supercomputers for Starters
Part 9: Some conclusions

Cost-conscious computing

➢ Supercomputing is very expensive. Some really big runs cost on the order of 10k EURO and one
Flemish user had a project of 2.7 MEURO on LUMI in 2024.

o No academic user sees the full bill,

o but someone is paying that bill.

o So a supercomputer should be used efficiently.

➢ And this is not trivial

o Though your non-supercomputer work will also benefit.

➢ And remember:

o It is not a machine that will automatically magically run every program faster than a PC, though
there is often a high degree of compatibility with Linux PC’s

o It is not an excuse for lousy programming. First optimize and then move to the supercomputer and
not the other way around.

Cost-conscious computing:
Software users

➢ Select your packages with care and follow the evolutions in your field

o Hardware evolves, some software packages evolve while other packages stay behind

o There is a lot of work going on on software optimisation of many popular open source simulation
packages

o The most hyped package or technology is not always the best for your needs

o But the package that your advisor used for their Ph.D. isn’t always the best either.

➢ Learn how to use the packages efficiently, with a balance between execution efficiency and time-to-
answer.

o Most packages, especially the free ones, have no auto-tune facility; you need to do that work!

o And for numerical simulation: Understand the limits of the models and numerics.

Cost-conscious computing:
Software developer

➢ Prototype languages are just for building prototypes.
Not suitable for production runs (e.g., Matlab), though the situation is improving.

o Julia is a nice alternative for those applications that even supports GPU computing

➢ Scripting languages are for gluing components together.
Not suitable for whole applications that you’ll run for months (e.g., Python, Perl).

o Julia is a nice alternative for those applications also

➢ (Pre-)compiled applications (instead of running in a JIT virtual machine) are fashionable again.
Look at what’s happening in the mobile computing world!

➢ Automatic garbage collection is not a good friend with distributed memory applications.

➢ The wheel has been invented already. Use well-written frameworks and libraries to develop your
application rather than “numerical recipes”.

Cost-conscious computing:
Why you should care

➢ Resources are not infinite and most clusters run at a fairly high load

o You’ll get more work done if your code is more efficient, thanks to a fair share policy, or limited
allocations on larger clusters

o If we want more money for more compute capacity, we’d better show our funding agencies we use
the available capacity well

▪ DeepSeek vs chatGPT may inspire them…

o And our power budgets are limited also

➢ Don’t participate in climate marches if you don’t want to pay attention to efficiency

➢ An important task for the VSC is knowledge transfer to industry so that the industry can use HPC to
become more competitive.

o Compute time does come at a cost for industry…

o Time-to-solution matters

“Why should I care? I need to write my Ph.D. as fast as

possible, produce papers and B.T.W., it’s (almost) free, isn’t it?”

Cost-conscious computing:
Why you should care (2)

➢ Those days when Intel engineers were optimising your program while you were having lunch or going
to a party are long gone.
Since about 2005 to be precise, when Dennard scaling started to break down.

➢ That’s when further increasing clock speeds became physically difficult and when further gains from
improving instruction level parallelism also became small.

➢ Since then, further speed increases almost exclusively came from increased parallelism at the higher
levels: wider vector instructions, more cores and more nodes.

➢ Even that is slowing down as we’re bumping into the physical limits of semiconductor technology and
as the cost per transistor stopped decreasing.

➢ The evolution in computing is towards increasing performance per Watt as energy bills become
prohibitively high (server farms, supercomputers) or portability matters (lightweight, so small
battery). This implies more but slower cores so lower single-thread performance.

“But by the time I’ve reworked my code or rolled out a better

application in my research, faster computers will be around.”

Cost-conscious computing:
Software quality matters

➢ As a consequence of the evolution of semiconductor technology:

o Expect only moderate performance increases (if any) for a constant budget, unless switching to
radically new architectures

o Expect performance/Watt to increase less than before, unless radically new architectures bring a
solution

➢ Hence further speed increases will have to come more and more from better software

o Better algorithms and a better implementation

o Exploit new architectures, which will require code changes

➢ The “computational” in computational science more than ever means having attention to the
computations and willingness to understand what you’re doing at the computational level also.

o You cannot drive a big truck or an F1 car with a regular driver’s license,

o And you cannot use a supercomputer in the same way as a regular PC or a smartphone.

HPC
=

High-Performance Computing
≠

High-end Personal Computer

Lesson 0

It is more and more the software
that makes the supercomputer!

Lesson 1

Parallelism, hierarchy and streaming

Lesson 2

Efficient setup of a run depends on 3 elements:

1. The hardware of the supercomputer

2. The application

3. The (size of the) problem you’re solving

Lesson 3

It’s crisis!

Transistors don’t become cheaper anymore

Lesson 4

It is more and more the software
that makes the supercomputer!

Lesson 1

Questions?

Further information

➢ Course notes

➢ YouTube play list

o And a shorter but similar introduction given at EPCC, with focus on computational chemistry

➢ Some tutorials on the web

o A Beginner’s Guide to High-Performance Computing (Oregon State University)

o Lawrence Livermore National Lab (LLNL) introduction to parallel computing takes a different path
but is an interesting document (as are their other courses)

➢ An article in HPC Wire on the re-emergence of vector instructions

https://klust.github.io/SupercomputersForStarters/
https://www.youtube.com/watch?v=i3cpkJ6iszk&list=PL55zlrFQxxWaMJWK8TiSqYo4yAgizY70k
https://www.youtube.com/watch?v=i3cpkJ6iszk
http://www.shodor.org/media/content/petascale/materials/UPModules/beginnersGuideHPC/moduleDocument_pdf.pdf
https://computing.llnl.gov/tutorials/parallel_comp/
https://computing.llnl.gov/?set=training&page=index
https://www.hpcwire.com/2016/09/26/vectors-old-became-new-supercomputing/

Further information

➢ Vastly different SSD speeds depending on capacity, showing that parallelism is important there too:

o 2022 M2 MacBook Pro 13” (launched in June 2022)

▪ Review on ArsTechnica

▪ Review on ExtremeTech

o 2016 iPhone 7 32 GB compared to the 128GB and 256GB SKUs

▪ ExtremeTech article, with a more technical explanation of what’s going on.

▪ Article on CNET

https://arstechnica.com/gadgets/2022/06/m2-macbook-pros-256gb-ssd-is-only-about-half-as-fast-as-the-m1-versions/
https://www.extremetech.com/computing/337476-base-model-macbook-pro-with-m2-has-slower-ssd-than-the-m1-version
https://www.extremetech.com/mobile/238006-iphone-7-storage-tests-show-higher-end-models-are-significantly-faster-than-the-32gb-version
https://www.cnet.com/tech/mobile/yes-your-32gb-iphone-7s-storage-is-slower-but-heres-why-it-doesnt-matter/

Further information

➢ OpenMP:

o Links on the VSC documentation web site OpenMP page

o Website of the OpenMP Architecture Review Board

➢ Intel Threading Building Blocks web site

➢ C#

o Microsoft Visual Studio manuals contain a lot of information

o The Mono framework enables running C# programs on Linux and macOS

➢ Go: The Go home page

➢ A tutorial about POSIX Threads Programming by LLNL

https://docs.vscentrum.be/software/openmp_for_shared_memory_programming.html
http://openmp.org/
https://www.threadingbuildingblocks.org/
https://msdn.microsoft.com/en-us/library/kx37x362.aspx
http://www.mono-project.com/
https://golang.org/
https://hpc-tutorials.llnl.gov/posix/

Further information

➢ MPI:

o Links on the VSC documentation web site MPI page

o Open MPI implementation

o MPICH implementation, the basis for Intel MPI and Cray MPI

➢ The Julia programming language and its YouTube channel

o Article about Julia adoption in HPC Wire

➢ Charm++ web site (University of Illinois)

https://docs.vscentrum.be/software/mpi_for_distributed_programming.html
http://www.open-mpi.org/
https://www.mpich.org/
http://julialang.org/
https://www.youtube.com/user/JuliaLanguage
https://www.hpcwire.com/2020/01/14/julia-programmings-dramatic-rise-in-hpc-and-elsewhere/
http://charm.cs.uiuc.edu/

Further information

➢ Coarray Fortran

o Web page at Rice (outdated, development is very slow)

o Elements incorporated in the Fortran 2008 standard

o Support in recent versions of the Intel Fortran compiler

o Some support in recent GCC gfortran versions (5.1 or newer best)

➢ Unified Parallel C:

o Berkeley UPC

➢ Chapel web site and Facebook page

➢ OpenSHMEM web site

➢ GASPI

o Web page of the consortium working on GASPI in Germany

o GPI-2 implementation by the Fraunhofer institute

http://caf.rice.edu/
https://wg5-fortran.org/
https://gcc.gnu.org/wiki/Coarray
https://upc.lbl.gov/
https://chapel-lang.org/
https://www.facebook.com/ChapelLanguage
http://openshmem.org/
http://www.gaspi.de/
http://www.gpi-site.com/

Further information

➢ OpenCL and SYCL

o The Khronos group that develops the standard, also maintains OpenCL documentation and a page
with SYCL resources

➢ OpenACC

o OpenACC web page

➢ Intel oneAPI (includes DPC++) – USA Aurora exascale system

➢ AMD ROCm (includes HIP) – LUMI supercomputer and USA Frontier exascale system

➢ Frameworks:

o Kokkos (Sandia)

o Raja (LLNL) - GitHub

o Alpaka (CASUS, Helmholtz)

https://www.khronos.org/opencl/
https://www.khronos.org/sycl/resources
http://www.openacc.org/
https://software.intel.com/en-us/oneapi
https://rocm.docs.amd.com/en/latest/
https://github.com/kokkos/kokkos
https://computing.llnl.gov/projects/raja-managing-application-portability-next-generation-platforms
https://github.com/LLNL/RAJA
https://github.com/alpaka-group/alpaka

Interesting articles

➢ NextPlatform: Compiling History to Understand the Future

https://www.nextplatform.com/2018/11/02/compiling-history-to-understand-the-future/

	Slide 1: Supercomputers for Starters
	Slide 2: Supercomputers for Starters
	Slide 3: Goals
	Slide 4: Goals
	Slide 5: Gromacs manual
	Slide 6: SAMtools
	Slide 7: VASP
	Slide 8: Why supercomputing?
	Slide 9: Supercomputing jobs
	Slide 10: What it does not
	Slide 11: A supercomputer is a parallel computer
	Slide 12: A layered architecture
	Slide 14: A layered architecture
	Slide 15: A compartmentalised supercomputer
	Slide 16: Supercomputers for Starters
	Slide 17: The CPU: 1 GHz ≠ 1 GHz
	Slide 18: A simple computer
	Slide 19: A simple computer – A look inside
	Slide 20: Executing instructions
	Slide 21: Instruction-level parallelism: Pipelining
	Slide 22: Instruction-level parallelism: Superscalar execution
	Slide 23: Data parallelism through vector computing
	Slide 24: Data-level parallelism: Other SIMD
	Slide 25: Conclusion: 2 levels of parallelism in the CPU
	Slide 26: Symmetric multiprocessing
	Slide 27: Symmetric multiprocessing
	Slide 28: Shared-memory multiprocessing Non-Uniform Memory Access
	Slide 29: Shared-memory multiprocessing Non-Uniform Memory Access
	Slide 30: What does this look like in software?
	Slide 31: What does this look like in software?
	Slide 32: Hardware threads
	Slide 33: Programming shared memory
	Slide 34: Distributed memory
	Slide 35: Distributed memory
	Slide 36: Cheap&lousy - Anecdotes
	Slide 37: Programming distributed memory
	Slide 38: A modern supercomputer...
	Slide 39: Vaughan (AMD Rome) node
	Slide 40: Vaughan (AMD Rome) node
	Slide 41: Fast evolution
	Slide 42: Fast evolution (2)
	Slide 43: Can a PC be faster than a supercomputer today?
	Slide 44: Can a PC be faster than a supercomputer today?
	Slide 45: Don’t believe me?
	Slide 46: Part II: Lessons learnt
	Slide 47
	Slide 48: CPU die shot
	Slide 49: Regular PC processor die
	Slide 50: A CPU package
	Slide 51: Supercomputers for Starters
	Slide 52: The memory performance gap
	Slide 55: The memory performance gap: Speed-limiting factors
	Slide 56: The memory performance gap: A solution
	Slide 57: The memory performance gap: What can we do?
	Slide 58: The memory hierarchy
	Slide 59: Vaughan (AMD Rome) node revisited
	Slide 60: Combined hierarchy: AMD Rome (Vaughan and Hortense)
	Slide 61: Combined hierarchy: AMD Milan (LUMI, Horense extension, newer Vaughan nodes)
	Slide 62: Supercomputers for Starters
	Slide 63: Files on a supercomputer
	Slide 64: Problem 1: Disks break
	Slide 65: Problem 1: Disks break
	Slide 66: Problem 2: File system block size
	Slide 67: Problem 2: File system block size (2)
	Slide 68: Problem 3: Physics and the network
	Slide 69: Problem 4: Metadata
	Slide 70: Higher bandwidth through separation of data and metadata
	Slide 71: Higher bandwidth through separation of data and metadata
	Slide 72: Higher bandwidth through separation of data and metadata
	Slide 73: A storage revolution?
	Slide 74: Flash drives (January 2025)
	Slide 75: Is flash a storage revolution?
	Slide 76: Is flash a storage revolution? (2)
	Slide 77: File system: To remember...
	Slide 78: File system: To remember... (2)
	Slide 79: 2020 UAntwerp storage system
	Slide 80: Supercomputers for Starters
	Slide 81: Supercomputers for Starters
	Slide 82
	Slide 83: Scaling
	Slide 84: Dennard scaling
	Slide 85: Dennard scaling (2)
	Slide 86: Cost per transistor
	Slide 87: Keywords: Parallelism, hierarchy and streaming
	Slide 88: Keywords: Parallelism, hierarchy and streaming (2)
	Slide 89: Keywords: Parallelism, hierarchy and streaming (3)
	Slide 90: Andy and Bill’s law
	Slide 91: Andy and Bill’s law (2)
	Slide 92: Andy and Bill’s law (3)
	Slide 93: Supercomputing is about software, not hardware
	Slide 94: Supercomputing is about software, not hardware (2)
	Slide 95: Assembling the cluster: Access and admin part
	Slide 96: Assembling the cluster: Storage
	Slide 97: Assembling the cluster: Compute nodes
	Slide 98: Assembling the cluster: An (older) cluster node
	Slide 99: The complete cluster
	Slide 100: The complete cluster (2)
	Slide 101: A real supercomputer: Cray EX (LUMI)
	Slide 102: A real supercomputer: Cray EX (LUMI)
	Slide 103: A real supercomputer: Cray EX (LUMI)
	Slide 104: A real supercomputer: Cray EX (LUMI)
	Slide 105: Comparison: Cray-2
	Slide 106: Supercomputers for Starters
	Slide 107: Why?
	Slide 108: Why?
	Slide 109: Shared memory
	Slide 110: Shared memory
	Slide 111: Vector computing
	Slide 112: Distributed memory
	Slide 113: Distributed memory
	Slide 114: Example applications
	Slide 115: Supercomputers for Starters
	Slide 116: Speed-up
	Slide 117: Speed-up
	Slide 118
	Slide 119: Matrix multiplication
	Slide 120: 6 variants of matrix multiplication C = C + A*B
	Slide 121: Fortran timings
	Slide 122: jki-variant
	Slide 123: jki-variant
	Slide 124: How can BLAS be even faster?
	Slide 125: And a little surprise...
	Slide 126: On a laptop
	Slide 127: Scaling: Speedup
	Slide 128: Scaling: Efficiency
	Slide 129: And another surprise…
	Slide 130: Demo conclusions
	Slide 131: Supercomputers for Starters
	Slide 132: Accelerators
	Slide 133: Types of accelerators
	Slide 134: Types of accelerators (2)
	Slide 135: Types of accelerators (3)
	Slide 136: Offloading to accelerators
	Slide 137: Offloading to accelerators
	Slide 138: Offloading to accelerators (2)
	Slide 139: Offloading to accelerators (3)
	Slide 140: CPUs with accelerator features
	Slide 141: Accelerators Where can you find them?
	Slide 142: Accelerator programming
	Slide 143: Accelerator programming: Low-level
	Slide 144: Accelerator programming: Low-level
	Slide 145: Accelerator programming: Compiler directives
	Slide 146: Accelerator programming: Compiler directives
	Slide 147: GPU programming: C++ extensions
	Slide 148: GPU programming: Frameworks
	Slide 149: GPU programming: Libraries
	Slide 150: Status of GPU computing
	Slide 151: Status of GPU computing: Problems and solutions
	Slide 152: Status of GPU computing
	Slide 153: 2016 GPU node
	Slide 154: A quad-GPU A100 supercomputer node
	Slide 155: Towards exascale: AMD MI250X in LUMI and Frontier
	Slide 156: NVIDIA Grace Hopper GH200
	Slide 157: AMD MI300A – El Capitan and Hunter
	Slide 158: Supercomputers for Starters
	Slide 159: Cost-conscious computing
	Slide 160: Cost-conscious computing: Software users
	Slide 161: Cost-conscious computing: Software developer
	Slide 162: Cost-conscious computing: Why you should care
	Slide 163: Cost-conscious computing: Why you should care (2)
	Slide 164: Cost-conscious computing: Software quality matters
	Slide 165
	Slide 166
	Slide 167
	Slide 168
	Slide 169
	Slide 170
	Slide 171: Questions?
	Slide 172: Further information
	Slide 173: Further information
	Slide 174: Further information
	Slide 175: Further information
	Slide 176: Further information
	Slide 177: Further information
	Slide 178: Interesting articles

