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Please, feel free to interrupt me at any time

There are no dumb questions, just dumb answers
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Why Python?
• I once wrote a Python method to compute the Verlet

list of all atoms in a Molecular Dynamics application

• I found it slow, annoyingly slow
• I replaced it with a C++ version

• It was 1200x faster (no typo!)

• In a research context
• In a HPC context
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What is Python 
good for?
• high-level general-purpose programming language
• large standard library The Python Standard Library
• wide variety of third-party extensions the Python Package Index (PyPI)

• Many packages with HPC in mind, built on top of HPC libraries

• Functionality of standard library and extension packages is exposed easily as
import module_name

• installing packages is easy
• pip install numpy
• High quality Python distributions (Intel, Anaconda), Windows/Linux/MACOS
• Open source 
• Very well documented, 
• Large community, used in most scientific domains
• …
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https://docs.python.org/3/faq/general.html#what-is-python-good-for

https://docs.python.org/3/library/index.html
https://pypi.org/


Python                vs              C/C++/Fortran
• Interpreted language
+ command line, smallest executable unit 

is a line, immediate feedback
+ very easy to learn/develop
+ very terse and readable code

+ Python enforces indentation
+ edit/run cycle
+ script is flexible
- overhead from interpreting
- very little runtime optimization done

good user experience 
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• Compiled language
- smallest executable unit is (sub)program, 

feedback is later and for a larger unit
- fortran/C harder to learn, C++ hard
- more verbose code

- edit/build/run cycle
- program is static, rigid (input parsing)
+ compiler minimizes the overhead
+ good optimization (automatic 

vectorization)
efficient← We want both! →



What is Python 
good for?
• The use of modules is so practical and natural to 

Python that researchers do not so often feel the 
need to reinvent wheels 
• The number of novices that have written their own 

(inefficient) linear algebra routines in Fortran/C/C++ 
approaches infinity. 

• Fortran/C/C++ tutorials and books usually focus on 
syntax, not on using third party libraries. Using 
libraries in Fortran is a matter of the linker, not a 
language feature. Python is very different in that 
respect.

• Python impregnates you with the idea that you need 
modules to get things done and by using them you 
usually get things done efficiently!
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The wheel was
invented ~8000 
years ago. A lot 
of very clever
people have put 
effort in it and It 
is pretty perfect
by now. 

Reinventing it
will most
probably not 
result in 
improvement.



What is Python 
good for?
In many ways Python 
gently pushes you in the 
right direction
Pleasant programming experience

“The principle of the least surprise”
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Interesting (if not indispensable)
Python modules
NumPy fast arrays / matrix operations (BLAS-like) / Fast Fourier Transform / mathematical functions 

defined on arrays / pseudo-random number generation to initialize arrays / simple statistics
SciPy more mathematical functions / mathematical & physics constants / numerical integration / 

ordinary differential equations / optimization / interpolation / signal processing / dense and 
sparse linear algebra

Pandas data science
Mpi4py MPI message passing between Python processes
Dask parallel computing in Python
matplotlib 2D and 3D graphics à la MATLAB
sympy symbolic mathematics
scikit-image image processing
h5py hdf5 portable file format for (large) scientific datasets
…
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many of these modules build 
on each other
(their developers did not reinvent wheels)



MPact

• granular dynamics code in C++
• Grains (3D shape) instead of atoms
• Force range relative to particle size is much shorter 

than in MD
• Dissipative forces (friction)

• executable reads an input file
• adding new features became painful due to 

the complexity of input file parsing
• we wrapped the program’s functionality in a 

Python module
• the input file became a Python script and the 

Python interpreter is the input parser
• adding features was no longer problematic
• flexibility and user friendliness x 10
• many codes today have a Python wrappers

• for a good reason
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The flexibility could even have been better, had the code been designed he other way around:
• start out with a high level Python inter face and fill in the details in Fortran/C/C++
• In many cases the advantages of Python were discovered after the application program gained popularity



What is Python 
good for?
Python is extremely useful 
as a glue language
Scripting language, or 
prototyping language vs 
programming language
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• your program becomes programmable
• input script vs input file
• immediate interface with all available Python 

packages 
• flexible pre- and post-processing
• flexible composition of a solution strategy

Still we are stuck on efficiency: as a programming language Python 
is (far) too slow

What are our options to improve performance?



def init_matrix(n):
# represent matrix as list of lists
m = []
for i in range(n):

m.append([])
for j in range(n): 

m[i].append(random.random())
return m

def matmul(a, b, c):
n = len(a)
for i in range(n):

for j in range(n):
c[i][j] = 0.0
for k in range(n):

c[i][j] += a[i][k]*b[k][j]

𝐶 = 𝐴 $ 𝐵

𝐶&' =(
)*+

,
𝐴&)𝐵)'
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500 × 500 matrices

Python 0.09 s

Python 32 s

C 0.014 s

C 0.49 s

Fortran 0.012 s

Fortran 0.11 s

Python 
performance



NumPy example
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import numpy as np

def init_matrix(n):
return np.random.uniform(0.0, 1.0, (n, n))

def matmul(a, b):
return np.dot(a, b)

500 × 500 matrices

numpy: 0.011 s

numpy: 0.077 s

Language/library Python C Fortran Python/numpy Fortran/BLAS

Matmul execution time [s] 32 0.49 0.11 0.077 0.060

415 ×

HPC libraries



• VASP is written in Fortran
• most of the cpu_time is spent in HPC 

libraries 
• lots of linear algebra
• MPI

You can create world 
class applications using 
libraries, without having 
to write a lot of 
optimized code

Using (good) modules in 
Python is option 1 to 
avoid performance 
issues
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Profiling Python
• A profiling tool is an application that runs your code 

and gathers statistics about the fraction of  cpu time 
that is spent in each part of your code

• line based
• function call based

• the parts that take a lot of cpu time are your first 
candidates for optimization

• profiling python
• Intel Advisor (only Intel Python distribution)
• cProfile module (function call based)
• kernprof (line based)

Before we start to cure perfor–
mance issues, we must locate 
them
• which sections of a code take 

most compute time?
Only optimize code that needs 
optimization
• all other optimizations are a 

waste of time and tax money
• 2x wasted since optimization 

typically makes code less 
readable and thus harder to 
maintain
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cProfile

nearly all time is spent in function primes (which lives in module primes 
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#file primes.py
from primes import primes
result = primes(1000)

$ python -m cProfile -s time primes.py

2914 function calls (2878 primitive calls) in 0.261 seconds

Ordered by: internal time

ncalls tottime percall cumtime percall filename:lineno(function)
1    0.250    0.250    0.251    0.251 primes.py:6(primes)
1    0.002    0.002    0.002    0.002 {built-in method loads}

1194    0.001    0.000    0.001    0.000 {'append' of 'list'}
43    0.001    0.000    0.001    0.000 {'join' of 'str'}



Line profiler 
kernprof https://github.com/rkern/line_profiler
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$ kernprof -l  -v  primes_lprof.py 1000
Timer unit: 1e-06 s

Total time: 1.01724 s
File: /home/gjb/Documents/Projects/training-material/Python/Profiling/primes_lprof.py
Function: primes at line 4

Line #      Hits         Time  Per Hit   % Time  Line Contents
==============================================================

4                                           @profile #decorate function to profile
5                                           def primes(kmax):
6         1            2      2.0      0.0      max_size = 1000000
7         1        72903  72903.0      7.2      p = array('i', [0]*max_size)
8         1            4      4.0      0.0      result = []
9         1            2      2.0      0.0      if kmax > max_size:
10                                                   kmax = max_size
11         1            1      1.0      0.0      k = 0
12         1            0      0.0      0.0      n = a2



profiling Python
• First option to cure performance bottlenecks is 

replacing our code with calls to functions in HPC 
modules

• that is, obviously, not always possible

what are our options to write efficient 
Python functions?

cProfile and kernprof:
• relatively simple tools to expose 

performance bottlenecks
• cProfile for larger Python code with 

function calls
• kernprof for Python script without a lot 

of function calls

Intel Advisor 
• more complicated 
• much more detailed

• roofline model
• info on expected cause of bottlenecks
• advice for curing
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timing 
microbenchmarks
a microbenchmark is a small piece 
of code for which you implement 
several versions and measure their 
execution time with the purpose 
of optimization
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• ipython command line: use magic %time or %timeit

• Command line: use timeit module

In [1]: from primes import primes
In [2]: %timeit result = primes(1000)
10 loops, best of 3: 172 ms per loop

timing result

$ python -m timeit 'from primes import primes' 'primes(1000)'
10 loops, best of 3: 174 msec per loop

module to use statements to execute, a string per line



second option:
numba numba.pydata.org

• Annotate Python functions with decorators
• Code (at least partially) transformed to C

• fully automatic and transparent
• just-in-time compilation (JIT)

• For better performance, provide type information
• simplified threading

• Automatic vectorization (SIMD)
• Can generate code for GPGPUs

• but you'd have to know some CUDA

numba.pydata.org
Numba translates Python 
functions to optimized machine 
code at runtime using the 
industry-standard LLVM compiler 
library. Numba-compiled 
numerical algorithms in Python 
can approach the speeds of C or 
Fortran
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https://llvm.org/


Motivating example: timings
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In [1]: import primes_p

In [2]: import primes_n

In [3]: %timeit primes_n.primes(1000)
5.56 ms ± 226 µs per loop (mean ± std. dev.

of 7 runs, 1 loop each)

In [4]: %timeit primes_p.primes(1000)
301 ms ± 3.25 ms per loop (mean ± std. dev.

of 7 runs, 1 loop each)

54 ´ faster

numba implementation is much faster!
• how much work to get there?
• how complicated is it?



Motivating example: code
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import numpy as np
from numba import jit

@jit #decorator
def primes(kmax):

p = np.zeros(1000)
result = []
if kmax > 1000:

kmax = 1000
k = 0
n = 2
while k < kmax:

i = 0
while (i < k and

n % p[i] != 0):
i = i + 1

if i == k:
p[k] = n
k = k + 1
result.append(n)

n = n + 1
return result primes_n.py

import numpy as np

def primes(kmax):
p = np.zeros(1000)
result = []
if kmax > 1000:

kmax = 1000
k = 0
n = 2
while k < kmax:

i = 0
while (i < k and

n % p[i] != 0):
i = i + 1

if i == k:
p[k] = n
k = k + 1
result.append(n)

n = n + 1
return result primes_p.py

That was
easy!



Does it always work?
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from array import array
from numba import jit

@jit
def primes(kmax):

p = array('i', [0]*1000)
result = []
if kmax > 1000:

kmax = 1000
k = 0
n = 2
while k < kmax:

i = 0
while (i < k and

n % p[i] != 0):
i = i + 1

if i == k:
p[k] = n
k = k + 1
result.append(n)

n = n + 1
return result primes_na.py

import numpy as np
from numba import jit

@jit
def primes(kmax):

p = np.zeros(1000)
result = []
if kmax > 1000:

kmax = 1000
k = 0
n = 2
while k < kmax:

i = 0
while (i < k and

n % p[i] != 0):
i = i + 1

if i == k:
p[k] = n
k = k + 1
result.append(n)

n = n + 1
return result primes_n.py

Minor
change



Does it always work: timings?
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In [1]: import primes_pa

In [2]: import primes_na

In [3]: %timeit primes_na.primes(1000)
81.9 ms ± 2.18 ms per loop (mean ± std. dev.

of 7 runs, 1 loop each)
In [4]: %timeit primes_pa.primes(1000)
99.3 ms ± 878 µs per loop (mean ± std. dev.

of 7 runs, 10 loops each)

1.2 ´ faster

numba is just slightly faster,
there be dragons…



Eager JIT
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from numba import jit

@jit
def julia_set(domain, iterations, max_norm, max_iters):

for i, z in enumerate(domain):
while (iterations[i] <= max_iters and

z.real*z.real + z.imag*z.imag <= max_norm*max_norm):
z = z**2 - 0.622772 + 0.42193j
iterations[i] += 1 julia_numba.py

from numba import jit, void, int32, float64, complex128

@jit(void(complex128[:], int32[:], float64, int32))
def julia_set(domain, iterations, max_norm, max_iters):

for i, z in enumerate(domain):
while (iterations[i] <= max_iters and

z.real*z.real + z.imag*z.imag <= max_norm*max_norm):
z = z**2 - 0.622772 + 0.42193j
iterations[i] += 1 julia_numba_eager.py

Function signature
specification

2195 ´ faster than Python

912 ´ faster than Python

2.4 ´



Python to numba type mapping
Python type numba type

None void

int int8, uint8, int16, uint16, 
int32, uint32, uint64, int64

float float32, float64

complex complex64, complex128

1D array e.g., float64[:]

2D array e.g., float64[:,:]
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Note: no maximum int in Python 3, numba can overflow!



numpy ufunc

• numpy ufunc
• element-wise on numpy arrays
• supports reduction, accumulation, broadcasting
• can be written in C/Cython

• cumbersome

• numba
• @vectorize: create ufunc
• @guvectorize: create generalized ufunc
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ufunc example
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from numba import guvectorize, void, int32, float64, complex128

@guvectorize([void(complex128[:], float64[:], int32[:], int32[:])],
'(n),(),()->(n)')

def julia_set(domain, max_norm, max_iters, iterations):
for i, z in enumerate(domain):

iterations[i] = 0
while (iterations[i] <= max_iters[0] and

z.real**2 + z.imag**2 <= max_norm[0]**2:
z = z**2 - 0.622772 + 0.42193j
iterations[i] += 1 julia_ufunc.py

…
iterations = julia_set(domain, max_norm, max_iters)
…

2D arrays: automatic broadcasting

Don't forget!

1680 ´ faster than Python Return type



numba conclusions

• numba
• Pros

• Very simple to use
• Offers excellent speedups when applicable
• Easy to create numpy ufunc

• Cons
• Black box
• Requires numba install

• Features not covered here:
• Automatic parallelization: experimental
• CUDA code generation: requires familiarity with CUDA
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Third option
cython cython.org

• Annotate Python code with 
type information

• Code (at least partially) 
transformed to C

• requires setup.py file

• Shared library is build

Cython is an optimising static compiler for Python
Cython gives you the combined power of Python and C to let you 
• write Python code that calls back and forht from and to C or C++ 

code natively at any point.
• easily tune readable Python code into plain C performance by adding 

static type declarations, also in Python syntax
• use combined source code level debugging to find bugs in your 

Python, Cython and C code.
• Interact efficiently with large data sets, e.g. using multi-

dimensional NumPy arrays
• quickly build your applications within the large, mature and widely 

used Cpython ecosystem.
• integrate natively with existing code and data from legacy, low-level 

or high-performance libraries and applications.
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Motivating example: timings
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In [1]: import primes_vanilla as primes_p

In [2]: import primes_cython. as primes_c

In [3]: %timeit primes_c.primes(1000)
100 loops, best of 3: 4.89 ms per loop

In [4]: %timeit primes_p.primes(1000)
1 loops, best of 3: 356 ms per loop

72 ´ faster

Cython implementation is much faster!
but…

how much work to get there?
how complicated is it?



Motivating example: code
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def primes(int kmax):
cdef int n, k, i
cdef int p[1000]
result = []
if kmax > 1000:

kmax = 1000
k = 0
n = 2
while k < kmax:

i = 0
while (i < k and

n % p[i] != 0):
i = i + 1

if i == k:
p[k] = n
k = k + 1
result.append(n)

n = n + 1
return result

primes_c.pyx

from array import array

def primes(kmax):
p = array('i', [0]*1000)
result = []
if kmax > 1000:

kmax = 1000
k = 0
n = 2
while k < kmax:

i = 0
while (i < k and

n % p[i] != 0):
i = i + 1

if i == k:
p[k] = n
k = k + 1
result.append(n)

n = n + 1
return result primes_p.py



Motivating example:
setup.py, building & using
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from distutils.core import setup
from Cython.Build import cythonize

setup(
ext_modules=cythonize('primes_c.pyx')

)
setup.py

$  python  setup.py  build_ext --inplace

Fairly painless,
don't forget to
build though!

#!/usr/bin/env python

from primes_c import primes
import sys

results = primes(int(sys.argv[1]))
print(', '.join(map(str, results))) primes.py

Import like any
other Python module



Numba vs Cython

• see 
• http://jakevdp.github.io/blog/2012/08/24/numba-vs-cython/
• https://jakevdp.github.io/blog/2013/06/15/numba-vs-cython-take-2/

• Numba takes the lead in performance and is easier to use
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http://jakevdp.github.io/blog/2012/08/24/numba-vs-cython/
https://jakevdp.github.io/blog/2013/06/15/numba-vs-cython-take-2/


Fourth option
Build your own Python modules from Fortran/C/C++ code

A low-level language like Fortran/C/C++ allows 
maximal code optimization.

The language in which the shared library was written 
is in principle immaterial.

There are, however, practical differences.

Python was designed to be 
extended by modules developed in 
Fortran/C/C++
In principle a Python module is 
nothing but a shared library 
(it can also be an ordinary Python 
source file)

several tools are available to build 
shared libraries that can be used 
as Python modules
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Fortran? C? C++?
• C++ is inefficient

• Modern compilers good enough to generate efficient 
code 

• After all your are using the same hardware
• Fortran is efficient

• Also fortran has constructs that sometimes come in 
handy, but can kill performance

• But C++ has quite a bit more features which can kill 
performance than Fortran. 

• Because C++ is a general purpose language and 
Fortran is meant for scientific computing

• Hence writing performant C++ is harder.
• Yet these features can be extremely useful if you use 

them wisely
• Less critical for high level code features which carry 

out a lot of computation
• For computational kernels where performance is an 

issue you generally need to stay close to the C subset 
and far away from the C++ features such as classes, 
inheritance, virtual functions, etc. (templates are an 
exception) 

The art of choosing a 
programming language 
(for research codes)
Here’s a list of arguments I often 
hear…
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Lie #1

Lie #2



Fortran? C? C++? • I’ll use C++ because I know it better
• Unless you have read and understood all the C++ 

books by Scott Meyers, Herb Sutter, Andrei 
Alexandrescu, Nicolai Josuttis

• In which case you probably also understand which 
C++ features can kill performance and when they 
should be used to your advantage

• For number-crunching I find myself advancing faster 
using Fortran than using C++ (which I do know 
better!)

• The only exception is when there is a need for special data 
structures which are not readily available in Fortran 
(Containers in C++ STL)

The art of choosing a 
programming language 
(for research codes)
Here’s a list of arguments I often 
hear…
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Lie #3



Fortran? C? C++? • I’ll use C++ because it is better documented 
• There aren’t many books on Fortran like the above 

ones on C++ 

• very good material provided by Rheinold Bader
https://doku.lrz.de/display/PUBLIC/Materials+-
+Programming+with+Fortran?preview=/25559045/255
59048/Fortran_3days.pdf

• There is no website of the same quality as 
cplusplus.com or cppreference.com for Fortran (imho)

• But still it is much harder to learn and to learn to use 
efficiently than Fortran

• Not a valid argument

The art of choosing a 
programming language 
(for research codes)
Here’s a list of arguments I often 
hear…
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Not a lie

https://doku.lrz.de/display/PUBLIC/Materials+-+Programming+with+Fortran?preview=/25559045/25559048/Fortran_3days.pdf


Fortran? C? C++?
• I’ll use a language that interoperates nicely with 

Python
• Choice #1 : Fortran

• f2py (= Fortran to Python) converts your F90 
subprograms effortlessly into a Python module

• f2py is part of NumPy and very well integrated with it
• You can pass NumPy arrays directly to and from your 

F90 subprograms without copying!
• That means you do memory management in Python – where it 

is easy (it is more cumbersome in Fortran)) – and computation 
in Fortran – where it is efficient.

• This is by far the easiest option

The art of choosing a 
programming language 
(for research codes)
Here’s a list of arguments I often 
hear…
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Extremely good point!



f2py example
! file my_sq.f90
function my_sq(x)
implicit none

! declare return value
real*8 :: my_sq

! declare dummy arguments
real*8 :: x

! function body
my_sq = x*x

end function
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> f2py –c my_sq.f90 –m my_f90_tools
... much output ...

> ls *.so
my_f90_tools.cpython-37m-darwin.so*
> python
Python 3.7.0 (default, Jun 28 2018, 07:39:16)
[Clang 4.0.1 (tags/RELEASE_401/final)] :: 
Anaconda, Inc. on Darwin
>>>
>>> from my_f90_tools import my_sq
>>> print(my_sq(10))
100.0
>>>

• there is a surprise here…
• we squared an integer (10) and got back a float

(100.0).
• the Fortran function my_sq expects a double precision 

number and returns a double precision number
• the Python wrapper of the Fortran function my_sq

automatically converts the argument (if 
• This involves a copy operation and a conversion operation 

and may be costly, especially in the case of array 
arguments.

• add “-DF2PY_REPORT_ON_ARRAY_COPY=1” to the f2py 
command to receive warnings when passing arguments 
involves copying

• Note that the return value of a function is always copied
• So, NEVER return arrays from functions

• How do we have to return arrays then?
• use dummy arguments for modifying existing NumPy arrays



f2py surprise 2
! file my_sum.f90

subroutine my_sum(the_sum,a)
real, intent(out) :: the_sum
real, dimension(:), intent(in) :: a
...
the_sum = ... !compute result

end subroutine my_sum
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> python
... 
>>> from my_f90_tools import my_sum
>>> import numpy as np
>>> a = np.array([1,2,3])
>>> sum_a = 0.0
>>> my_sum(sum_a,a)
TypeError: my_f90_tools.my_sum() takes 
at most 1 argument (2 given)
>>> sum_a = my_sum(a)
>>>

f2py converts intent(out) to left hand 
side return value 
|(the wrapper behaves as a function)



f2py surprise 2
! file my_sum.f90

subroutine my_sum(the_sum,a)
real, intent(inout) :: the_sum
real, dimension(:), intent(in) :: a
...
the_sum = ... !compute result

end subroutine my_sum
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> python
... 
>>> from my_f90_tools import my_sum
>>> import numpy as np
>>> a = np.array([1,2,3])
>>> sum_a = 0.0
>>> my_sum(sum_a,a)
>>>
>>> sum_a = my_sum(a)
TypeError: my_f90_tools.my_sum() 
missing required argument 'a' (pos 2)
>>>Specify intent(inout) to create 

true output arguments which 
do not involve copying



f2py surprise (3)
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• Make sure your variables have the same precision in python and Fortran
• if they don’t they will get copied back and forth (which can make you waste a lot of 

cycles)
• add -DF2PY_REPORT_ON_ARRAY_COPY=1 to f2py options to get a notice when arrays 

are copied

• Python Fortran
int, np.int64 integer*8
np.int32 integer*4
float, np.float64 real*8
np.float32 real*4

• Arithmetic in Fortran with *4 is faster than *8 (typically 2x)
• But arithmetic in Python with np.int32 or np.float32 is slower!



typical f2py script
#!/bin/bash
source=my_sq.f90
module=my_f90_tools
F90=`which gfortran`

rm -f ${module}.cpython-*

/Users/etijskens/miniconda3/envs/python36/bin/f2py -c \
--build-dir f2py_build \
--opt="-O3 -fopt-info-all" --arch="-mavx" \
-DF2PY_REPORT_ON_ARRAY_COPY=1 \
--f90exec=${F90} \
${source} -m ${module}

ls –l ${module}*so

43



Fortran? C? C++?
• I’ll use a language that interoperates nicely with 

Python
• Choice #2 : C++

• Achieve exactly the same with boost.python, 
boost.multiarray and github.com/mdboom/numpy-
boost

• Boost is a huge hiqh-quality C++ library collection (see 
boost.org). If you are programming in C++ without knowing the  
boost libraries, you should either take a sabbatical and study it, 
or give up programming forever.

• A little harder than Fortran, but much more powerful
• no extra tool needed, just the compiler, and the above 

libraries
• boost.multiarray and numpy_boost are header-only, 

boost.python has to be build (there is a conda package 
for it)

• Access to wide range of standard C++ data structures 
which are not readily available in Fortran

• Swig is also possible for building Python modules 
from C++ code (swig.org) 

The art of choosing a 
programming language 
(for research codes)
Here’s a list of arguments I often 
hear…
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Extremely good point!

https://github.com/mdboom/numpy-boost


Fortran? C? C++?
• I’ll use a language that interoperates nicely with 

Python
• Choice #3 : C

• Handcode Python to C interfaces (cumbersome)
• Use swig (swig.org) (less cumbersome)
• Take this choice only if you know C already and don’t 

want to learn C++ or Fortran (which is a pity anyway)
• (don’t call me for helping you out…)

The art of choosing a 
programming language 
(for research codes)
Here’s a list of arguments I often 
hear…
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Extremely good point!

Conclusion for option 4 (writing your own modules in Fortran/C/C++):

use (Modern) Fortran with f2py and a good compiler suite (e.g. Intel) 
unless

you are a seasoned C++ programmer and/or you need features from 
the C++ Standard Template Library or the Boost libraries
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A strategy for (research) code development
that

(1) minimizes coding efforts
(2) allows for high performance

(3) provides flexible and reusable components



(research) code 
development strategy: Principle 1
• Start out in Python
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• Easy and fast development
• readable code



(research) code 
development strategy: Principle 2
• Start out simple

• as simple as possible
• with a straightforward algorithm
• no fancy data structures 

• stick to arrays if possible
• SOA, no AOS

• write as little code as possible by using existing 
(HPC) Python modules, e.g. NumPy, SciPy, … (use 
Python as glue)

• formulate your problem in terms of 
mathematical domains for which Python 
modules exist, e,g. matrix algebra, linear 
algebra, ...

• certainly do not optimize/parallellize at this 
point
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• in order to have a working 
code that yields correct 
answers as soon as possible

• this will serve for reference 
results to validate later 
improvements



(research) code 
development strategy: Principle 3
• test and validate

• from the very beginning
• all code is guilty until proven innocent!

• if there is 1% chance to make an error on every 
change, the chance that your code is correct 
after 1000 changes is ~10-5, which is the 
situation after about one week of programming!

• write unit tests 
• Python unittest module 

pythontesting.net/framework/unittest/unittest-
introduction/

• nose, nose2
• pytest

• automate 
• rerun tests after every change, however small 

the change
• integrate your tests in the build system 
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• a bug is always 
discovered too late

• the more changes you 
apply after before re-
running your tests, the 
harder it becomes to 
locate the bug.

http://pythontesting.net/framework/unittest/unittest-introduction/


(research) code 
development strategy: Principle 4
• [iff principles 1-3 are satisfied]

improve 
• add better algorithms 

• look for better computational complexity e.g. O(N)
• without throwing away the reference solution, which is probably far too slow for 

production, but it is indispensable for validation and testing
• still using Python

• if anytime later you decide that for performance reasons you need to turn a Python 
method into a module method written in Fortran/C/C++, it will be easy to translate

• do not throw away the Python variant
• you need it as a reference solution (use it in your unit tests)
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(research) code 
development strategy: Principle 5
• [iff principles 1-4 are satisfied]

profile and optimize
• locate performance bottlenecks
• see what you can do with numba (or Cython).
• verify performance relative to machine limits

• apply the roofline model (easy with Intel Advisor)
• study approaches for removing performance bottlenecks 

• common causes
• vectorization prohibited
• bad memory access pattern

• if necessary replace the bottleneck with a Python module written in Fortran/C/C++
• Performance programming in Fortran/C/C++ requires expertise

• which we are happy to provide, especially if you follow this strategy
• attend our performance programming courses
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(research) code 
development strategy: Principle 6
• [iff principles 1-5 are satisfied]

parallellize (if there is a need to do so)
• when the execution time is too large
• when one node does not provide enough memory or bandwidth
• when your code has competitors which do parallellize
• consider parallellization

• mpi4py
• dask

• requires expertise 
(which we are happy to provide, especially if you follow this strategy)
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(research) code development strategy: 
some missing ingredients

• versioning system
• git
• mercurial

• build system
• which adjusts to your current environment
• makefiles are rather versatile

• documentation
• python has integrated help showing doc-

strings
• sphinx
• smart editors can show your doc-string

• IDEs
• eclipse with PyDev, also support for 

Fortran/C/C++, 
• liclipse
• pycharm
• Atom-2

• environment management
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def my_fun(arg):
"""
this is function does nothing.
its argument arg is useless.
"""
pass

> python
... 
>>> import my_f90_tools
>>> help(my_fun)
my_fun(arg)

this is function does nothing.
its argument *arg* is useless.

>>>



• extra information (not just on Python)
• https://github.com/gjbex/training-material
• the Python info is in the Python directory
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https://github.com/gjbex/training-material
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http://tiny.cc/calcua-python-survey

http://tiny.cc/calcua-python-survey

