
vscentrum.be

Introduction to Linux
Ine Arts, Franky Backeljauw, Stefan Becuwe, Kurt Lust, Carl Mensch,
Michele Pugno, Bert Tijskens, Robin Verschoren

Version Fall 2024

Overview

DAY 1 – basics

➢ The shell

o exploring the command line

➢ The filesystem

o navigating the filesystem

o manipulating files & directories

o reading and editing text files

➢ Useful tools

o hands-on

➢ Pipelines & scripting

o streams & redirection

o pipelines

DAY 2 – diving deeper

➢ The environment

o environment variables

o aliases & persistent settings

➢ The shell

o expansions

➢ Useful tools

o regular expressions

➢ Bash scripting basics

➢ Extra topics

o ownership & permissions

o running & stopping programs

What is GNU/Linux?

➢ Unix-like computer operating system (OS)

o free and open-source, worldwide community, active development

➢ Under the hood: Linux kernel

o abstraction between hardware and software

o device drivers, system calls, process and memory management, …

➢ Typically offers GNU utilities and libraries

o basic tools to work with files, compile programs, …

o e.g.: coreutils, binutils, Bash shell, …

➢ Comes in many flavours, called distributions

o bundles desktop environments, applications, …

Available Linux-like environments

➢ Microsoft Windows

o Microsoft Subsystem for Linux (WSL)

o MobaXterm

➢ macOS

o Terminal app (built-in) or iTerm2

o note: macOS is based on BSD (Unix), thus offering BSD variants of commands

o use package managers like Homebrew (or MacPorts) to install the GNU utilities

▪ e.g. (using Homebrew): brew install coreutils findutils gnu-tar gnu-sed grep wget

▪ use (GNU) gsed instead of (BSD) sed

➢ Use an online terminal emulator

o e.g.: https://sandbox.bio/tutorials/playground

https://learn.microsoft.com/en-us/windows/wsl/
https://mobaxterm.mobatek.net/
https://iterm2.com/
brew.sh
http://macports.org/
https://sandbox.bio/tutorials/playground

vscentrum.be

The shell — Part 1
Exploring the command line

What is the shell?

➢ A program that interprets commands and sends them to the OS

➢ Sometimes referred to as ”the terminal” or a “Command Line Interface” (CLI)

o waits for input and performs the requested tasks

o the input language is a scripting language (variables, iterations, ...)

o provides access to 100s of commands/programs

➢ Different shell programs exist

o on most Linux systems, the default shell is called bash (Bourne Again SHell)

o note: on macOS, the default shell is zsh, but bash is also available

bash

Command line basics

➢ $ and text preceding it is called the “prompt”

o executing a command: type a command after the prompt and press the Enter key

o autocompletion: type part of the command and press the Tab key (↹)

 $ ls -l /etc/host↹

➢ Linux systems are case and space sensitive

o files: myfile is not the same as MyFile

o commands: spaces separate parts of commands

➢ Some keyboard shortcuts when using the Bash shell environment

bash

Left ← and Right → moving around the line Ctrl + a go to the beginning of the line

Up ↑ and Down ↓ browse the command history Ctrl + e go to the end of the line

Ctrl + r backward history search Ctrl + l clear the screen

Hands-on

➢ Enter the following commands and try to interpret the output

$ echo Hello, world.

 $ date

 $ date --utc

 $ cal

 $ whoami

 $ hostname

 $ uptime

$ clear

$ sleep 3

$ time sleep 3

$ who

$ echo $SHELL

$ echo -n Hello, world.

...

Anatomy of a command

➢ Single command: program that does one thing

 $ command

➢ Arguments (parameters): provide the input/output that the command interacts with

 $ command argument1 argument2 [...]

➢ Options: modify a command’s behavior (also called flags)

 $ command –option single dash + one letter (short form)

 $ command --long-option double dash + one word (long form)

➢ Generally, they compose as follows:

 $ command [-o]... [--long-option]... [argument]...

Arguments & options

➢ Interpreted by the command itself → usage depends on the command

o convention: options first, non-option arguments last

o short options can be combined, the order often doesn’t matter

 $ date -R –u = $ date -Ru

o for some commands, strict ordering rules apply

 $ find –maxdepth 2 –type f

o non-option arguments often refer to a filename

 $ less myfile

o but not always

 $ echo "This is an example"

 $ date +"%A %e %B"

Types of commands

➢ A command can be either:

o any program (or script) on the system

▪ use which to find out where the program is located/installed

o a built-in shell command

▪ get an overview with man builtin

o an alias or (user-defined) shorthand for a more complex command

▪ use alias to see the currently defined aliases

o a (user-defined) shell function

type

Getting help

➢ Documentation for commands is available as online Linux man pages

o There is no shame in using Google or ChatGPT for help, the web is your friend!

➢ Or directly from the command line itself

o ask a command about its use with the --help or -h options (if available)

 $ ls --help

o manual pages for commands

 $ man ls

o More elaborate info manuals

 $ info ls

➢ Search man pages for keywords

 $ man –k <keyword>

man

https://man7.org/linux/man-pages/index.html

Getting help

➢ Efficiently reading man pages

 ↓ / ↑ or j / k scrolling up or down

 h help for the man page viewer

 q quit reading the man page

➢ Searching through man pages

 / + ”word” + Enter search for the given word

 n find the next occurrence

 N find the previous occurrence

➢ Conventions for describing key combinations

 ^-<key> = Ctrl + <key> press Ctrl and the given key together

 C-<key> = Ctrl + <key>

 M-<key> = Alt + <key> M stands for “Meta” key (note: Option on Apple keyboards)

man

vscentrum.be

The filesystem — Part 1
Navigating the filesystem

Manipulating files & directories

The filesystem

➢ Tree of directories and files

➢ File name describes the full location
(also called path) in the file system

o /home/student/intro_linux/scripts

o /tmp/myfile.txt

o / is called the root directory

➢ Directories are separated by /

➢ The filesystem is case sensitive

o note: macOS is case insensitive by default

/

bin

etc

home
student

.bashrc

Desktop

intro_linux scripts

Pictures
img1.jpg

img2.jpg

other_user
lib

tmp myfile.txt

The filesystem

➢ Absolute file name path starts from root /

➢ Relative file name starts from current working directory

➢ pwd prints the current working directory

o at login, usually your home directory

➢ Use .. to refer to a parent directory

➢ E.g., starting from /home/student

relative path absolute path

.. /home

../other_user /home/other_user

../.. /

introlinux /home/student/introlinux

/

bin

etc

home

student

.bashrc

Desktop

introlinux scripts

Pictures

img1.jpg

img2.jpg

other_user

lib

tmp myfile.txt

pwd

The filesystem

➢ Absolute file name path starts from root /

➢ Relative file name starts from current working directory

➢ pwd prints the current working directory

o at login, usually your home directory

➢ Use .. to refer to a parent directory

➢ note: on Windows

o folders are separated by \

o the filesystem is case insensitive

o the root indicates a physical partition, e.g. C:\

o there can be multiple (root) trees

/

bin

etc

home

student

.bashrc

Desktop

introlinux scripts

Pictures

img1.jpg

img2.jpg

other_user

lib

tmp myfile.txt

pwd

Navigating the filesystem

➢ Use cd <directory> to change the current directory

 $ cd Downloads
 $ cd ../Documents
 $ cd - go back to the previous directory
 $ cd go to your home directory

➢ ls (without arguments) lists the current directory’s contents

➢ ~ (“tilde”) is a shorthand for the absolute path to your home directory

 $ cd ~ = $ cd /home/<username>
 $ cd ~/Downloads = $ cd /home/<username>/Downloads

➢ A single . points to the current directory

 $ cd ./Downloads = $ cd Downloads

cd
ls

Hands-on

➢ Try out the following sequence of commands

 $ cd

 $ ls

 $ cd Documents

 $ pwd

 $ cd ..

 $ cd ./Documents

 $ pwd

$ cd /bin

$ ls

$ pwd

$ cd ~

$ pwd

$ cd –

$ pwd

Manipulating files and directories

➢ Warning: no “recycle bin” or undo!

o be very careful when deleting/copying/moving files at the command line!

➢ mkdir creates directories

 $ mkdir dir1 dir2 dir3

o create nested directories

 $ mkdir -p topdir/subdir/subsubdir

➢ rmdir removes empty directories

 $ rmdir dir1 dir2 dir3

mkdir
rmdir

Move, copy and remove

➢ mv source target moves (renames) files and directories

o if target = existing file → overwrite

o if target = existing directory → move inside it

 $ mv source1 source2 ... target move list of items into existing target directory

➢ cp source target copies files and directories

o same rules as mv, except:

 $ cp srcdir target
 cp: -r not specified; omitting directory 'ttt1’

o recursively copy directories and their content:

 $ cp -r srcdir target

➢ rm file1 file2 ... removes (deletes) files — remember: no “recycle bin” or undo!

 $ rm -r mydir recursively deletes directories with their contents

mv
cp
rm

Using wildcards

➢ Wildcards help generate lists of filenames, e.g.:

 $ mv file*.txt target

o Bash replaces file*.txt by the list of matching files.

➢ * matches everything → file*.txt matches any filename which

o starts with file and ends with .txt

➢ But remember: no “recycle bin" or undo!

 → typing mistake can be dangerous!

➢ Safety first for cp, mv and rm

 using -i or --interactive asks for confirmation before overwriting or deleting

Wildcard expressions

➢ * any sequence of (0 or more) characters

 file*.txt → file.txt file_copy.txt file1.txt ...

➢ ? any single character

 file?.txt → file1.txt file2.txt ... files.txt

➢ [set of characters] any single character from the given set

 [fF]ile.txt → file.txt File.txt

➢ [!set of characters] any single character not from the given set

 file[!123].txt → file4.txt file5.txt ... files.txt

➢ [[:class:]] use a predefined character class

https://github.com/micromatch/posix-character-classes

~ hands-on1

dir1 dir1.1 file_c

dir2

filea.txt

file_b

Hands-on

➢ Create new directories and files in your home directory, according to the given diagram

o use touch file.txt to create empty file

o check your result with tree ~/hands-on1

o challenge yourself: do this exercise
from your home ~ without using cd

➢ Let’s move things around

o copy the files in dir1.1 to its parent directory

o rename dir1 to dir0

o copy dir2 (including its contents) to dir2_backup

o delete the files in dir2 using wildcards

o restore the backup directory

Hands-on

➢ Which names match the following patterns?

 [abcdefghijk]*.pdf

 backup.[0-9][0-9][123]

 [Ff]ile?.*

 file_[[:digit:]].txt

file_1.txt

cv.pdf

backup-001

backup.182

introLinux.pdf

A.pdf

File_C.docx

thesis.pdf

Filea.txt

backup.634

Reading and editing text files

➢ Reading (displaying) text files

o cat → display the entire content of a text file

o more → display the content of a file one screen at a time

o less → allows forward and backward navigation and searching (less is more)

o head -n <x> or tail -n <x> → print the first/last x lines of a file

➢ Create or edit text files using editors that run inside the terminal

o nano → simple and straightforward text editor (user-friendly, easy to use interface)

o vi → stands for visual interface, takes some practice (use ”modes” for insert or commands)

o touch → create an empty file (or update the timestamp of the file if it already exists)

vscentrum.be

Useful tools — Part 1
Hands-on & examples

Hands-on

➢ Scenario: a colleague sends you a link to a dataset (here: zip-file) and
you want to know how many inputs there are in the file squeue.txt

o note: step by step instructions and commands are given
▪ it is up to you to look up the correct usage

o Download the file https://calcua.uantwerpen.be/courses/introlinux/input.zip — use wget

o Extract (or unzip) the files — use unzip

▪ can you look at the content of the zip file without unzipping it?

o Locate the file named squeue.txt — use tree and find

▪ which tool was better suited?

o Count the number of lines in this file — use wc

https://calcua.uantwerpen.be/courses/introlinux/input.zip

Hands-on

➢ Scenario: you download some scripts and you quickly want to know the value of a parameter

o note: step by step instructions and commands are given
▪ it is up to you to look up the correct usage

o Download the files: https://calcua.uantwerpen.be/courses/introlinux/pi_montecarlo.tar.gz

o Extract the files — use tar

▪ pay close attention to the options

o You encounter two scripts with a similar name: script01_new.py and script01_latest.py
Show the difference between the two files, but ignore white spaces — use diff

o Show the line where parameter n_points is assigned — use grep

https://calcua.uantwerpen.be/courses/introlinux/pi_montecarlo.tar.gz

Download & extract files

➢ Download files with wget

 $ wget https://[...].zip

➢ ZIP file format

 $ unzip file.zip

 $ zip -r file.zip

➢ TAR / TAR.GZ

 $ tar -zxf file.tar.gz target_dir

 $ tar -zcf file.tar.gz source_dir

o TAR stands for Tape Archive — also called “tarball”

o more common in Unix/Linux environments

o preserves file permissions, ownership, and timestamps,
making it more suitable for backups and archives

wget
unzip
tar

Comparing files and directories

➢ Detect differences between text files

 $ diff -i file1 file2 ignore case

 $ diff -w file1 file2 ignore all white space

 $ diff -y file1 file2 output in two columns

 $ diff -r dir1 dir2 recursively compare directories

diff

Hands-on

➢ Scenario: you see that a colleague opens file student_scores.csv with comma separated values in
Excel to sort the data by Score

o Not on your watch — you use Miller like a pro!

o note: parts of the commands are given, complete them using the documentation

➢ Start by reading Miller in 10 minutes

➢ Install the Miller command mlr

o on Linux: apt install miller (Ubuntu) or yum install miller

o on macOS with Homebrew: brew install miller

➢ Pretty-print the .csv file — mlr --icsv ???

➢ Sort (and pretty-print) the .csv by the values of field Score — mlr --icsv ???

https://miller.readthedocs.io/en/latest/
https://miller.readthedocs.io/en/latest/10min

Processing text-formatted structured data

➢ Why our sysadmin loves Miller (obligatory slide!)

o easily query, shape and/or reformat CSV, TSV, JSON, … data files

o pretty-print data files, convert between file formats

o using compact verbs instead of a programming language

➢ Some examples

 $ mlr --icsv --ojson cat example.csv convert example.csv to JSON format

 $ mlr --c2j cat example.csv use a keystroke-saver flag

 $ mlr --csv tail –n 4 example.csv print header and last 4 lines

 $ mlr --c2p cut -f user,jobid example.csv pretty-print only fields user and jobid

 $ mlr --t2x -N filter '$1 == "Fedora”’ then filter on Fedora, show version and date
 cut -f 2,3 then sort -n 2 distrostab.txt

mlr

https://miller.readthedocs.io/en/latest/file-formats/

vscentrum.be

Pipelines & scripts — Part 1
Streams & redirection

Pipelines

Streams, redirection, pipelines

➢ Output and input (I/O) of commands is managed using streams and file descriptors

o streams provide an interface with powerful formatted input and output functions (high-level)

o under the hood, streams use file descriptors (fd) to keep track of the I/O-resources (low-level)

 stream readable name fd purpose

 stdout standard output 1 for normal output

 stderr standard error 2 for printing warnings and errors

 stdin standard input 0 from which commands receive input

o by default, “stdin” is read from the keyboard, while “stdout” and “stderr” are sent to the terminal

➢ We can redirect the output and input streams, to

o write output to a file

o send output from one command to input of another

o read stdin from a file

Output redirection

➢ To redirect an output stream, use operator i> with its associated file descriptor (fd) i

➢ Redirect standard output (stdout)

 $ ls 1> ls-output.txt

 $ ls > ls-output.txt without fd: redirects stdout

o the file ls-output.txt is created and contains the command’s output

o note: stderr is still shown in terminal

➢ Redirect standard error (stderr)

 $ ls wrong-filename 2> ls-error.txt

➢ Redirect both stdout and stderr

 $ ls *.txt *.jpg 1> ls-output.txt 2> ls-errors.txt to different files

 $ ls *.txt *.jpg > ls-output-and-errors.txt 2>&1 to the same file

>

Output redirection

➢ Hiding a program’s output

 $ ls > /dev/null

o /dev/null is a special “file” that discards everything written to it

➢ note: redirecting (>) creates a new file

o if a file exists with the same name, it will be overwritten!

o if the command produces no output, the file will be empty

➢ Append stdout and/or stderr to the end of a file, without erasing previous content

 $ date >> diary.txt

 $ echo "Dear diary, today ..." >> diary.txt

 $ ls notfound 2>> ls-errors.txt

 $ ls *.txt *.jpg >> ls-output-and-errors.txt 2>&1

>>

Input redirection

➢ Standard input (stdin) is by default read from the keyboard — example: try with bc

➢ The input redirection operator < filename opens a file, and the program processes it as input

 $ echo "2 * 17" > homework.txt
 $ bc < homework.txt
 34

o useful for automating commands that normally require user input

o or for reading from specific sources (devices) directly

➢ Note: for commands that accept a file name argument. these commands have the same effect

 $ less homework.txt

 $ less < homework.txt

➢ Redirecting both standard input and standard output

 $ bc < homework.txt > answers.txt

<

Pipelines

➢ Combine several commands by chaining them using the “pipe” operator |

 $ command1 | command2 | command3 [| ...]

o a pipeline creates a flow of data between commands

o stdout from command1 is directly sent to stdin of command2 (etc)

o the commands run in parallel, each command processes input as it becomes available

➢ Example: scrolling through the list of all processes with ps and less

 $ ps aux | less

➢ Create complex commands from simple building blocks

 $ who | cut -d' ' -f1 | sort | uniq > users

➢ note: to pipe stderr from a command, redirect it to stdout

 $ command1 2>&1 | command2

|

Hands-on

➢ Given the file chemistry.txt, how many courses are
thought by Wouter Herrebout in the first semester?

o note: use pipelines whenever possible!

o Investigate the file — use cat

o Print only the lines belonging to the first semester — use grep

o Of those lines, select the lines containing Wouter Herrebout — use grep

o Count the resulting number of lines — use wc

Hands-on

➢ Which are, in alphabetical order, the last 5 course codes starting with 1001WET?
Write them to a new file.

o Alphabetically sorted by course code

o Sort the lines in alphabetical order — use sort

▪ pay close attention to the options

o Of those lines, select the last 5 — use a pipe and tail

o Write the output to a new file

o Edit your pipeline to instead sort alphabetically by course nam

Hands-on

➢ Which course is listed twice in the file chemistry.txt?

o Print each unique line of the file, with the number of times it occurred — use uniq

▪ carefully read the last line of DESCRIPTION in the man page

o Print the line with the highest count — use pipelines, sort and tail

Hands-on

➢ Take a look at the file squeue.txt

o note: this file shows a list of jobs that were submitted to the cluster

o Build pipelines to

▪ find how many jobs are running

▪ check how many jobs are running per user

▪ show how many jobs per user are running, sorted in descending order

▪ sort the jobs on partition zen2 by their state and job id

▪ count the number of jobs per number of nodes

▪ count the number of jobs per state

▪ give, per user, the number of running jobs as well as the number of nodes in use

o question: is there a command to do this without pipelines?

Overview of frequently used commands

➢ Typical commands for pipelines

 cat concatenate files (useful to print out file content)

 grep filter lines which match a given search pattern

 head / tail print first/last lines of input

 sort sort input alphabetically

 uniq report or leave out repeated lines

 wc print the number of lines, words and bytes of input

 sed transform input (pattern replacement and more)

➢ Find more commands in the GNU core utilities manual

https://www.gnu.org/software/coreutils/manual/html_node/index.html

Sneak preview — Shell scripts

➢ shell script = text file containing a series of commands

➢ Example script “myscript.sh”

➢ Run (execute) the script

 $ bash myscript.sh

➢ note:

o commands are separated by newlines or by semicolons ‘;’ (as in the terminal)

o commands are executed one after the other, just as if you entered them manually

my_analysis input.data > my_results/science.txt
tar -cvzf my_results.tar.gz my_results
rm input.data

bash

vscentrum.be

The environment
Environment variables

Aliases & persistent settings

Environment variables

➢ We can use variables in the shell

 $ myvar=some_value set the value for variable myvar

 $ echo $myvar get the current value of myvar — called “variable expansion”

 $ set display all variables

o no spaces around ‘=’

o no spaces in some_value unless using quotes

o there are “plain” variables — they only exist in the running shell itself

➢ Environment variables are special

 $ export myvar make myvar an environment variable

 $ printenv display environment variables

o they are passed on to processes started from the shell

o they can influence the behaviour of programs (e.g. OMP_NUM_THREADS)

export

Environment variables

➢ Some standard environment variables

PATH a colon-separated list of directories that are searched
when you enter the name of an executable program

HOME the path name of your home directory (~)

USER your user name

SHELL the name of your shell program

PWD the current working directory

TMPDIR directory for temporary files (usually /tmp)

➢ Example: access an environment variable from within a Python script

$ python3 -c 'import os
> print("hi there,", os.getenv("USER"), "!")'

$PATH

➢ Substitute a string for a simple command

➢ $ alias <name>=<value> means that $ <name> will be replaced by $ <value>

➢ Handy to set default options and simplify your commands

 $ alias ls="ls -F --color=auto" append filetype indicator, colorize output

 $ alias lart="ls -Falrt --color=auto" show hidden files, recently modified first

➢ Removing (deleting) aliases

 $ unalias <name> removes the alias for <name> (in the current shell)

 $ unalias -a removes all aliases (in the current shell)

Aliases alias

Environment startup

➢ User-defined aliases, variables and functions are reset when restarting the shell

➢ Store the settings so they are persistent for your environment

o applied every time you start a (interactive) shell:

 ~/.bashrc you can define your own aliases and functions here

o applied once at login:

 /etc/profile system wide, for all users

 ~/.bash_profile

 ~/.bash_login

 ~/.profile

vscentrum.be

The shell — Part 2
Expansions

Shell expansions

➢ When you type a command line and press Enter

o the shell performs several processes on the text before it carries out your command

o the process that makes this happen is called expansion

Variable expansion

➢ $variable_name → variable’s current value
optional {}: ${variable_name}

 $ echo $USER

 $ set display all variables

 $ echo $SUER what if variable doesn’t exist?

 $ echo ${USER}_home

 $ echo $USER_home doesn’t work without {}!

 $ myvar='Hello, world!' set a variable

 $ echo $myvar

Shell expansions

Arithmetic expansion

➢ $((expression)) → result of expression

 $ echo $((10 + 5 + 3))

o arithmetic expression — note: only integers in bash!

o operators: +, -, *, / , % (remainder), ** (exponentiation)

o single parentheses may be used to group multiple subexpressions:

 $ echo $(((5**2) * (3*4)))

Command substitution

➢ $(command) → output of command

 $ echo We are now $(date)

 $ echo I see $(ls -A | wc -l) files and subdirs

Shell expansions

Escaping special characters & using quotes

 $ echo The total is $100.00 # ?!

➢ Use “escape” character \ for literal use of special characters ($, \, `, {, }, (,), *, ␣)

 $ echo The total is \$100.00

➢ Inside single quotes '' special characters lose their meaning → no expansion at all

 $ echo text ~/*.txt {a,b} $(echo foo) $((2+2)) $USER
 $ echo 'text ~/*.txt {a,b} $(echo foo) $((2+2)) $USER'
 $ echo "text ~/*.txt {a,b} $(echo foo) $((2+2)) $USER"

➢ Inside double quotes "" special characters lose their meaning except $, \, `

 $ echo "$USER $((2+2)) $(cal)"
 $ echo "The total is \$100.00"

Shell expansions

Other

➢ Word splitting: words separated by space become separate arguments

 $ touch "two words.txt"
 $ ls -l two words.txt
 $ ls -l "two words.txt"
 $ ls -l two\ words.txt
 $ ls -l two↹

➢ Quote removal: after all expansions, quotes are removed unless you escape or quote the quotes

 $ echo "hello world"
 $ echo \"hello\" '"world"'

vscentrum.be

Useful tools — Part 2
Regular expressions

Regular expressions

➢ Often called “regex”

➢ Symbolic notation used to match text patterns

➢ Similar to wildcards (*, [], ?), but more powerful

➢ Many programs and programming languages support regular expressions:

o grep, sed, ...

o Text editors, e.g. emacs

o Python, Perl, Matlab...

Though slight differences can exist in notation and supported patterns

Regular expressions

➢ Example: counting animals in the Bible.

$ grep -Eo ' (dragon|serpent|lion|eagle)s? ' bible.txt | sort | uniq -c

 10 dragon
 4 dragons
 10 eagle
 3 eagles
 43 lion
 13 lions
 14 serpent
 4 serpents

grep

Regular expressions

➢ Literal characters and digits.
 $ grep lion bible.txt

➢ “Metacharacters”: repetitions, grouping, alternatives, ...

➢ Two notations for metacharacters:

o basic regular expressions (BRE):
 ^ $. [] * \(\) \{ \} \? \+ \|

o extended regular expressions (ERE):
 ^ $. [] * () { } ? + |

➢ Slides use ERE for readability.

Regular expressions
Metacharacters
➢ . Match any character.

 $ grep -h '.word' /usr/share/dict/words

o Remark difference with wildcards:
 $ touch .zip 1.zip 1zip 22.zip 2zip

 $ ls *zip

 $ ls *.zip

 $ ls | grep .zip

➢ ^ $ anchors: beginning (^) or end ($) of line.

 $ grep -h '^word' /usr/share/dict/words

 $ grep -h 'word$' /usr/share/dict/words

 $ grep -h '^word$' /usr/share/dict/words

grep -E

Regular expressions
Character classes
➢ [] character class

 [lw]ord matches lord and word

 [l-w]ord matches lord, mord, nord, ..., word

 [^lw]ord matches any ord not preceded by l or w

 [^l-w]ord matches any ord not preceded by l, ..., w

 ^[A-Z] matches any word beginning with an upper case letter

 ^[-AZ] matches any word beginning with -, A or Z

Regular expressions
Repetitions
➢ ? Match preceding element zero or one time

➢ * Match preceding element zero or more times

➢ + Match preceding element one or more times

➢ {} Match preceding element a specific number of times:

 {n} exactly n times

 {n,m} at least n times, at most m times

 {n,} at least n times

 {,m} at most m times

➢ Examples:

 A* matches <empty string>, A, AA, ...

 .* matches any sequence of characters

 \$[1-9][0-9]{2,} match any amount of $100 or more

Regular expressions
Sub-expressions, alternatives
➢ () sub-expression

 (bla)+ matches 1 or more repetitions of bla

 With \n you can refer to the n-th subexpression

➢ | alternatives

 word|lord matches word and lord

 (w|l)ord matches word and lord, using grouping

 (w|l|sw)ord matches word, lord and sword

Regular expressions
Basic vs. extended regular expressions
➢ Extended regular expressions: grep -E or egrep

➢ Examples:

$ egrep 'Et|Ut' /usr/share/dict/words
$ grep 'Et\|Ut' /usr/share/dict/words
 find Et or Ut in /usr/share/dict/words

$ grep -Eh '^(bz|gz|zip)' dirlist*.txt
$ grep -h '^\(bz\|gz\|zip\)' dirlist*.txt
 begins with bz or gz or zip

$ grep -Eh '^bz|gz|zip' dirlist*.txt
$ grep -h '^bz\|gz\|zip' dirlist*.txt
 begins with bz or contains gz or contains zip

grep -E

Regex: overview

. Match any (BRE)

^ $ anchor beginning or end of line

[] character classes

 repetitions: repeat preceding element:

? 0 or 1 times \?

* 0 or more times

+ 1 or more times \+

{x} x times \{x\}

{x,y} more than x, less than y times \{x,y\}

() subexpression \(\)

| alternative \|

\n n-th subexpression

Hands-on

➢ Use grep -E on the file /usr/share/dict/words:

o Which words start with chemi?

o which words contain both her and bout? (answer using 1 regular expression)

o which words start with a capital letter and contain two consecutive letters a?

o how many five letter words do you find? (use a pipeline)

Find and replace with regex

➢ sed Stream editor.

o Editing on a stream of text (standard input or set of files) using regular expressions

o Typical usage: search and replace

sed 's/regexp/replacement/'

▪ By default: only first occurrence on each line;
to replace all occurrences: add ‘g’ at the end

▪ By default: case sensitive

o Powerful but somewhat complex

o For larger tasks, you might choose awk, Perl, Python, ...

sed

Hands-on

➢ Find and replace all instances of “chemie” by “scheikunde” in the file chemistry.txt and write the
output to a new file.

o make sure the replacement is case insensitive

o do the replacement directly in the file

➢ Rewrite MM/DD/YYYY in distros/distrostab.txt as YYYY-MM-DD

o match the pattern MM/DD/YYYY by using 3 subexpressions

o construct the replacement by referring to the subexpressions

Find and replace with regex

➢ sed [options] <script> <file>

 -n silent: suppress automatic printing
 -i edit file in place
 -E use extended regex

o Script: [line selection] <command>

 n[,n2] line number n (until n2)
 $ last line
 /regex/ lines that match regex

▪ Command:

 s/regex/repl/ replace matches for regex by repl
 a append text after current line
 d delete current line
 <command>I case insensitive
 <command>g ‘global’ -> act on all occurrences on this line

sed

Other useful sed commands

Examples

$ sed -n '1,5p' distros.txt print only lines 1 to 5

$ sed '/Fedora/a from Redhat' distros.txt

$ sed '/Fedora/d' distros.txt only non-matches (equivalent of grep -v)

$ sed -i '1d' distros.txt

$ echo "front front" | sed 's/front/back/'

$ sed "s+/home+/thuis+g"

sed

vscentrum.be

The filesystem — Part 2
Ownership & permissions

Ownership & permissions

➢ Every user has a unique id / name and belongs to one or more groups

➢ To see your id, name and groups, run id

 uid your user id

 gid primary group id

 groups list of all groups you are a member of

➢ Every file or directory belongs to a user and a group with different access permissions for

o User

o Group

o Others = all other users who are not a member of the file’s group

id

Ownership & permissions

➢ Use ls -l to see ownership and permissions:

 $ ls -l scripts
 total 512
 -rwxr-xr-x 1 vsc20xxx antwerpenall 76 Feb 8 12:43 script01.sh
 ...
 permissions user group size modif.time filename

➢ -rwxrwxrwx three kinds of permissions for “user,” “group” and “others”

 permission files directories

 read read file’s contents list directory contents

 write modify file’s contents create, remove & rename files (also needs x)

 execute run file as a program enter directory & access contents

Setting permissions

➢ chmod can change the permissions for files or directories

➢ Add/remove permissions using chmod + or chmod -

 $ chmod +w file.txt add write permission for all users

 $ chmod g-w file.txt remove write permission for group

 $ chmod ug+x,o-r file.txt

➢ Or using numbers instead, where 0=none, 1=x, 2=w, 3=wx, 4=r, 5=rx, 6=rw, 7=rwx

 $ chmod 640 file.txt

➢ -R Recursive: change permissions on a directory and all its contents:

 $ chmod -R go-xr my_private_dir

chmod

Change ownership

➢ chown can change the owner and group of files and directories.

 $ chown owner file.txt

 $ chown owner:group file.txt

 $ chown :group file.txt

o -R recursive.

 $ chown -R owner:group my_dir

chown

vscentrum.be

Running programs
Processes and threads

Processes and threads

➢ A process = running instance of a program.

o has a unique identifier or PID.

o can start other processes: child processes.

o consists of one or more threads.

➢ Threads share access to the process’ memory,
but processes cannot access other processes’ memory.

➢ Parallelization on multiple CPU cores:

o multiple processes (“distributed memory parallelism”).

o multiple threads in one process (“shared memory”).

Processes and threads
Looking at processes

➢ The command ps prints information on running processes.

o $ ps show processes in current shell

 PID TTY TIME CMD

 8627 pts/12 00:00:00 bash

 19621 pts/12 00:00:00 ps

o $ ps x show all processes of current user

o $ ps ax show all processes of all users

o $ ps u show username, CPU and memory usage
 (can be combined with previous, e.g. $ ps axu)

o $ ps -u <user> show processes of the given user

➢ The commands top or htop show processes together with CPU and memory usage in real time.

ps

Processes and threads
Managing processes

Foreground processes

➢ Example: run xclock with $ xclock -update 1

 The process is started, you have no prompt.

➢ To terminate the foreground process, press Ctrl + c

 xclock disappears, the prompt returns.

➢ To stop (pause) the foreground process, press Ctrl + z

 The process is stopped in the background, the prompt returns.

 $ fg process resumes in the foreground.

 $ bg process continues in the background.

bg
fg

Processes and threads
Managing processes

Background processes

➢ To start a process in the background, terminate the command by &

 $ xclock -update 1 & bash prints the job number and PID, e.g. [1] 9582

➢ Multiple background jobs: use $ jobs to see a list:

 $ xclock -update 1 &
 [1] 9582

 $ xclock -update 1 &
 [2] 9588
 $ jobs

 [1]- Running xclock -update 1 &
 [2]+ Running xclock -update 1 &

➢ Use the job number to control different processes, e.g.

 $ fg %2 run job 2 in the foreground

&

➢ Reminder: Ctrl + c terminates the foreground process.

➢ Use the command kill <PID> to terminate any process (owned by you)

 $ kill 12345 Terminate process with id 12345.
 The process may belong to another shell.

➢ kill %<jobnum> terminates a background process:

 $ kill %2 Terminate job 2, with time for cleanup.

 $ kill -KILL %2 Terminate job 2 immediately.

➢ Use $ kill -STOP and $ kill -CONT to pause/resume processes.

Processes and threads
Terminating processes

kill

vscentrum.be

Scripting — Part 2
Bash scripting

Shell scripts

➢ shell script = text file containing a series of commands

➢ Example script “myscript.sh”

 $ bash myscripts.sh run (execute) the script

➢ note:

o commands are separated by newlines or by semicolons ‘;’ (as in the terminal)

o commands are executed one after the other, just as if you entered them manually

➢ Example scripts in https://calcua.uantwerpen.be/courses/introlinux/scripts.zip

my_analysis input.data > my_results/science.txt
tar -cvzf my_results.tar.gz my_results
rm input.data

bash

https://calcua.uantwerpen.be/courses/introlinux/scripts.zip

Shell scripts

➢ Note about line endings

o line endings are encoded differently under Windows and Unix/Linux

▪ Windows style: carriage return + line feed (CRLF, \r\n)

▪ Unix/Linux style: newline (\n)

o this can introduce problems with bash scripts

➢ Check which encoding is used:

 $ file filename

➢ If needed, convert your “Windows style” file into a “Unix/Linux” style:

 $ dos2unix –n inputfile outputfile

➢ A suitable text editor can do this as well

file
dos2unix

Shell scripts

➢ $ cat scripts/script01.sh

$ bash script01.sh call the interpreter (bash) ourselves

$ chmod +x script01.sh

$ script01.sh doesn’t work because work dir is not in PATH!

$./script01.sh the interpreter from the ‘shebang’ is used

#! /bin/bash

This is our first script.

echo 'Hello World!' # comment

“shebang”

./

Shell scripts

➢ #! is called “shebang”. It tells the system which interpreter should execute the script.

o For a bash script:
 #!/bin/bash

o Spaces (between parts) are optional
 #!/bin/bash = #! /bin/bash = #! /bin/bash

➢ Any scripting language, not just bash.

o Example for Python:
 #!/usr/bin/python3 uses that specific Python executable

o or preferably:
 #!/usr/bin/env python3 uses the first python3 found in PATH

o PATH is modified when using software modules (see HPC@UAntwerp)

Shell scripts

➢ Remember:

o Setting a variable: without $, no spaces around = e.g., myname=some_value

o Using a variable (variable expansion): with $ e.g., echo $myname

➢ User variables can not start with a digit: $1, $2, ... are special variables

‘command line arguments’

#!/bin/bash # script02.sh

currenttime=$(date +"%x %r %Z")
myname=$USER

echo "id: $myname, current time: $currenttime"

Command line arguments

$./script07.sh these are four arguments
$./script07.sh 'this is a single argument'

➢ More than 9 args? → ${10}, ${11}, ...

➢ List of all command line arguments: $@

➢ Last arg? ${!#} or ${@: -1} or (Bash only) $BASH_ARGV

#!/bin/bash # script07.sh

echo "Number of arguments: $#
\$0 = $0
\$1 = $1
\$2 = $2
...
\$9 = $9 "

For loop

for variable in list; do commands; done

➢ list can be any bash expression resulting in a list, e.g.

 for file in *.txt; do ... done loop over each txt file

➢ if “in list” is omitted, for loops over the command line arguments

#!/bin/bash # script09.sh
for i in A B C D; do
 echo $i
done

For loop

#!/bin/bash # script09b.sh

for i in $(seq 1 10); do
 echo $i
done

for i in $(seq 11 0.75 20); do
 echo $i
done

for i in {21..30}; do
 echo $i
done

Hands-on

➢ Write a script that adds up all command line arguments

o loop over all command line arguments

o add each argument to the total — use arithmetic expansion $(())

o test your script with different inputs — make sure your script is executable

➢ What do you expect to happen when instead of integers you input:

▪ text?

▪ decimals?

o test your expectations!

Hands-on

➢ Write a script that loops over each command line argument and that

o creates a directory dir_<argument> in the current location

o copies a template file input_<argument>.txt into this directory

o replaces “<param>” in this file by the value of the argument

➢ Challenge yourself!

o we want the name of the template file as the first command line argument

o run previous script without changes, with this new argument – what happens?

o try to fix what went wrong — look into the shift command

Hands-on

➢ Here is an example of a script
which some more logic structures

 if

 while

 case

 break / continue

 functions

 ...

o Try to figure out what it does

#!/bin/bash # script12.sh
while echo -n "enter number: "; read NUM
do
 if [$NUM -eq $NUM] 2>/dev/null; then
 :
 else
 echo " $NUM is not a number"
 continue
 fi
 if [[$(($NUM % 2)) -eq 0]]; then
 echo " $NUM is an even number"
 continue
 fi
 echo " $NUM is an odd number"
 break
done

Course feedback

➢ Please fill in our short questionnaire before Nov 30

➢ Let us know what you liked and how we can improve our courses

➢ Thank you for your participation!

https://forms.office.com/e/70uxh1Z3kE

Links

➢ linuxcommand.org/tlcl.php

➢ free-electrons.com/doc/legacy/command-line/unix_linux_introduction.pdf

➢ www.ibm.com/developerworks/linux/

➢ www.howtogeek.com/tag/linux/

➢ Greg's Wiki Bash Guide: mywiki.wooledge.org/BashGuide

o Common mistakes: mywiki.wooledge.org/BashPitfalls

➢ www.tldp.org

o Advanced bash guide: www.tldp.org/LDP/abs/html/

➢ Cheat sheets: devhints.io

http://linuxcommand.org/tlcl.php
http://free-electrons.com/doc/legacy/command-line/unix_linux_introduction.pdf
http://www.ibm.com/developerworks/linux/
http://www.howtogeek.com/tag/linux/
https://mywiki.wooledge.org/BashGuide
https://mywiki.wooledge.org/BashPitfalls
http://www.tldp.org/
http://www.tldp.org/LDP/abs/html/
https://devhints.io/

More training

➢ hpc.uantwerpen.be

➢ www.vscentrum.be

➢ www.vscentrum.be/training

http://hpc.uantwerpen.be/
http://www.vscentrum.be/
https://www.vscentrum.be/training

vscentrum.be

Supplemental material
More bash scripting structures

if

➢ Example:

 if ls file.txt
 then echo "That file exists."
 else echo "That file doesn't exist."
 fi

➢ Generic form

 if test1; then commands1
 elif test2; then commands2
 elif ...
 else commandsn
 fi

if

➢ Most frequently used command with if is

 if test expression

or its equivalent form

 if [expression]

➢ bash has an extended replacement

 if [[expression]]

which is easier to use, e.g. in combination with variables

if: test expressions

equivalent to:

if test $x -eq 5; then ...

if [[$x -eq 5]]; then ...

#!/bin/bash # script04.sh

x=5
if [$x -eq 5] ; then
 echo "x equals 5."
else
 echo "x does not equal 5."
fi

test expressions: files

file1 -nt file2 file1 is newer than file2

file1 -ot file2 file1 is older than file2

-d file file exists and is a directory

-f file file exists and is a regular file

-s file file exists and has size > 0

-L file file exists and is a symbolic link

-r file file exists and is readable

-w file file exists and is writable

-x file file exists and is executable

...

➢ Search for “bash file test operators” (or man test) to see more exotic ones...

test: text strings

-n string the length of the string > 0

-z string the length of the string = 0

string1 = string2 strings are equal

string1 != string2 strings are not equal

string1 > string2 string1 sorts after string2

string1 < string2 string1 sorts before string2

test: integers

int1 -eq int2 int1 = int2

int1 -ne int2 int1 ≠ int2

int1 -le int2 int1 ≤ int2

int1 -lt int2 int1 < int2

int1 -ge int2 int1 ≥ int2

int1 -gt int2 int1 > int2

test: combining

➢ Combining test expressions:

➢ Example:

 if [[$((x % 5)) -eq 0 && $((x % 2)) -eq 0]]
 then
 echo "$x is a multiple of 10"
 fi

[] [[]]

AND -a &&

OR -o ||

NOT ! !

while

➢ while test; do commands; done

#!/bin/bash # script06.sh

count=1
while [$count -le 5]; do
 echo $count
 count=$((count + 1))
done
echo "value of count: $count"

echo "Finished."

while

➢ Alternatively (one-liner at prompt):

 $ cat squeue.txt | while read line; do ... done

➢ Combining while and read: easy (quick & dirty) way to process lines of output

(no worries about how many spaces separate fields).

➢ squeue.txt can be found in the input folder

#!/bin/bash # script06b.sh

while read jobid partition jobname user state rest; do
 echo $jobid $state
done < squeue.txt

for

for variable in words; do commands; done

➢ words can be any bash expression resulting in a list, e.g.

 for file in *.txt; do ... done loop over each txt file

➢ if “in words” is omitted, for loops over the command line arguments

#!/bin/bash # script09.sh
for i in A B C D; do
 echo $i
done

for

#!/bin/bash # script09b.sh

for i in $(seq 1 10); do
 echo $i
done

for i in $(seq 11 0.75 20); do
 echo $i
done

for i in {21..30}; do
 echo $i
done

for

#!/bin/bash # script10.sh

for i; do
 if [[-r $i]]; then
 max_word=
 max_len=0
 for j in $(strings -n 2 $i); do
 len=${#j}
 if [[$len -gt $max_len]]; then
 max_len=$len
 max_word=$j
 fi
 done
 echo "$i: '$max_word' ($max_len characters)"
 fi
done

read

➢ Create variables and read their values from standard input

„

➢ Remarks:

o -n prevents echo from printing a new line

o extended version: see script05a.sh

#!/bin/bash # script05.sh

echo -n "Please enter an integer -> "
read int

echo -n "Enter one or more values > "
read var1 var2 var3 var4 var5

echo "int = ${int}, var1 = ${var1}, ..."

Command line arguments

$./script07.sh these are four arguments

$./script07.sh 'this is a single argument'

➢ „ More than 9 args? Use shift (see next slide) or ${10}, ${11}, ...

➢ Last arg? ${!#} or $BASH_ARGV (Bash only) or ${@: -1}

o Space in ${@: -1} is required to avoid confusion with :- expansion

#!/bin/bash # script07.sh

echo "Number of arguments: $#
\$0 = $0
\$1 = $1
\$2 = $2
...
\$9 = $9 "

Command line arguments

#!/bin/bash # script08.sh

echo "first argument in list: $1"
echo "last argument in list: ${@: -1}"

count=1
while [[$# -gt 0]]; do
 echo "Nr of arguments left = $#"
 echo "Argument $count = $1"
 count=$((count + 1))
 shift
done

Command line arguments

➢ Each time shift is executed, the value of $# is reduced by one,

the value of $2 is moved to $1, the value of $3 is moved to $2, etc.

$1 …$2 ${n-1} $n

A …B Y Z

$1 …$2 ${n-1} $n

B …C Z <empty>

shift

case

case word in
 pattern1) commands1 ;;
 pattern2) commands2 ;;
 ...
 patternn) commands_n ;;
esac

#!/bin/bash # script11.sh

read -p "enter word > "
case $REPLY in
 [[:alpha:]]) echo "single alphabetic character." ;;
 [ABC][0-9]) echo "A, B, or C followed by digit." ;;
 ???) echo "is three characters long." ;;
 *.txt) echo "is a word ending in '.txt'" ;;
 *) echo "is something else." ;;
esac

break and continue

#!/bin/bash # script12.sh
while echo -n "enter number: "; read NUM
do
 if [$NUM -eq $NUM] 2>/dev/null; then
 :
 else
 echo " $NUM is not a number"
 continue
 fi
 if [[$(($NUM % 2)) -eq 0]]; then
 echo " $NUM is an even number"
 continue
 fi
 echo " $NUM is an odd number"
 break
done

no-op

Functions

➢ Useful for sequence of commands that is often repeated

➢ Functions can also take arguments

➢ Example using functions defined in another file: script03a.sh and script03b.sh

#!/bin/bash # script03.sh
function func { # shell function
 echo "use func for $1"
 return
}

echo "step 1"
func "step 2"
echo "step 3"

Debugging

➢ How to detect and handle errors in a script?

➢ A finished command has an exit status. Convention:

o success → exit status 0

o error → exit status non-zero (status values differ for each command)

➢ The special variable “?” holds the last process’ exit status:

 $ ls existing_file
 existing_file
 $ echo $?
 0
 $ ls missing
 ls: cannot access missing: No such file or directory
 $ echo $?
 2
 $ echo $?
 0

Debugging

➢ Putting set -x at the beginning of your script will print out all steps as they are executed.

It’s a way to follow what’s going on if your script behaves unexpectedly.

➢ Likewise, set –e –u will stop the script if any command fails or when an empty variable is used.

➢ More info on debugging:

www.tldp.org/LDP/Bash-Beginners-Guide/html/sect_02_03.html

➢ More info on bash options such as -x:

www.tldp.org/LDP/abs/html/abs-guide.html#OPTIONS

http://www.tldp.org/LDP/Bash-Beginners-Guide/html/sect_02_03.html
http://www.tldp.org/LDP/abs/html/abs-guide.html

vscentrum.be

More useful tools — Part 3
screen – rsync – awk

Screen

➢ Use multiple shell windows from a single SSH session.

➢ Keep a shell active even through network disruptions.

➢ Disconnect and re-connect to shell sessions from multiple locations.

➢ Run a long running process without maintaining an active shell.

➢ Similar applications:

o tmux

o byobu

o …

Screen

➢ $ screen start a new "screen”

➢ $ screen -S screen1 start a "screen" named screen1

➢ $ screen -ls overview of (in)active screens

➢ $ screen -r reattach after detach or connection drop

➢ $ screen -x attach to a non-detached screen session (multi display mode)

➢ Key combinations:

o Ctrl + a, d detach

o Ctrl + a, c open a new window

o Ctrl + a, n goto next window

o Ctrl + a, p goto previous window

➢ Do not forget the host on which you launched the screen command ;-)

rsync

➢ Efficient transfer and synchronization of files and directories over network

➢ Like scp or rcp, but more options

➢ Typical usage: copy from source to destination, useful for backups/large transfers

 $ rsync [options] <source> <destination>

➢ source or destination may be remote (but not both)

➢ Some notable options (combine with an alias to avoid retyping):

o -a archive mode; keeps links, permissions, … (implies -r)

o -r recurse into directories

o -v verbose mode

o -z compress data during transfer

o -H preserve hard links

o --progress show transfer progress

rsync: files

$ rsync file user@server copies file locally (!)

$ rsync file user@server: copies file to ~ on server (mind the :)

$ rsync file user@server:file2 copies file to ~ on server, renamed file2

$ rsync file user@server:test/ copies file to ~/test on server (mind the /)

 remote dir ~/test/ created if non-existant

$ rsync file user@server:/home/user/ copies file to /home/user/ on server

$ rsync user@server:file ~ copies remote file to local ~

$ rsync user@server:dir/file ~ copies remote ~/dir/file to local ~

rsync: directories

$ rsync user@server:dir ~ skips directory, so does nothing
$ rsync user@server:dir/ ~ skips directory, so also does nothing

$ rsync -r user@server:dir ~ copy remote dir to local home dir (creates ~/dir)

$ rsync -r user@server:dir/ ~ copies content of remote dir to local home dir ~

$ rsync -r dir user@server: copy local dir to remote home dir
 (creates remote ~/dir if non-existant)

$ rsync -r dir user@server:dir2 copies local dir to remote dir2
 (result: user@server:dir2/dir)

$ rsync -r dir/ user@server:dir2 copies content of local dir to remote dir2
 (result: user@server:dir2/)

$ rsync -r user@server:dir dir2 copies remote dir to local dir2 (result: dir2/dir)

$ rsync -r user@server:dir/ dir2 copies content of remote dir to local dir2

 (result: dir2/dir)

awk

➢ Textual data processing

o Processing of a stream of text (standard input or set of files)

o Typical usage: list patterns and desired actions for that pattern

awk 'pattern1 { action1 } pattern2 { action2 } …' files

▪ By default, each line of a file is a “record”

• Several “fields” per record, separated by whitespace

▪ awk loops over all records, for each record:

• evaluates each pattern

• if pattern is true (non-zero result): execute associated action

o Powerful, but can become as complicated as you want

o https://www.gnu.org/software/gawk/manual/

https://www.gnu.org/software/gawk/manual/

awk: patterns

➢ Pattern elements

o BEGIN beginning of file

o END end of file

o 1 always

o 0 never

o <empty> always

o https://www.gnu.org/software/gawk/manual/html_node/Pattern-Overview.html

➢ Expressions

o <value1> == <value2> comparison (similar for !=,<,>,<=,>=)

o <value> ~ /<regex>/ value matches with regex (similarly !~ for absence of match)

o Logical expressions like Bash tests: AND (&&), OR (||) and NOT (!)

o https://www.gnu.org/software/gawk/manual/html_node/Expressions.html

https://www.gnu.org/software/gawk/manual/html_node/Pattern-Overview.html
https://www.gnu.org/software/gawk/manual/html_node/Expressions.html

awk: actions

➢ Grouped between braces {}

➢ Some building blocks:

o $n value of n-th field in current record

o print prints to stdout

o printf prints to stdout with extra formatting options

o next stops further processing of current record and continues with next record

o +, -, *, /, %, **, ++, -- arithmetic and increment operations

o <var> = …, <var> += …, <var> -= … variable assignment

➢ Separate action statements are separated by semicolon (;) or line-break

➢ https://www.gnu.org/software/gawk/manual/html_node/Statements.html

➢ https://www.gnu.org/software/gawk/manual/html_node/Action-Overview.html

https://www.gnu.org/software/gawk/manual/html_node/Statements.html
https://www.gnu.org/software/gawk/manual/html_node/Action-Overview.html

awk: examples

➢ Print every record/line of the file (both are equivalent):

 $ awk '1 {print}' squeue.txt

 $ awk ' {print}' squeue.txt

➢ Print only jobs where 5th field (STATE) in each record equals “Running”:

 $ awk '$5 == "R" {print}' squeue.txt

➢ Print 4th field (USER):

 $ awk '$5 == "R" {print $4}' squeue.txt

awk: variables

➢ Similar to Bash variables

o Built-in

▪ FS field separator (whitespace by default)

▪ OFS output field separator

▪ RS record separator (whitespace by default)

▪ ORS output record separator

▪ NR number of records processed (total number of records in END block)

▪ NF number of fields in a record

▪ Can be overwritten (in any action)

o User-defined

▪ Assigned in action (<var> = <value>)

▪ Scalar: numeric (1234, 6.02e+23), string ("abc"), regex (/<regex>/), …

▪ “Associative” arrays: fib[8] = 21, g["earth"] = 9.81

awk: examples

➢ Print lines 5-19:

 $ awk '5 <= NR && NR < 20 {print}' squeue.txt

➢ Keep number of running jobs for user id076 :

 $ awk '$5 == "R" && $4 == "id076" {nrj +=1}
 END {print nrj}' squeue.txt

➢ Keep number of running jobs per user, but print only for id076:

 $ awk '$3 == "R" {nrj[$4]+=1}
 END {print nrj["id076"] }' squeue.txt

➢ Keep number of running jobs per user, and print for all users:

 $ awk '$3 == "R" {nrj[$4]+=1}
 END { for (u in nrj) print u, nrj[u] }' squeue.txt

awk: built-in functions and utilities

➢ GNU awk has several built-in functions, ranging from sin, cos, tan to internationalization:

o https://www.gnu.org/software/gawk/manual/html_node/Built_002din.html

➢ GNU awk also contains several other built-in POSIX utility clones:

o These are not identical clones of the POSIX utilities, but similar in use.

o https://www.gnu.org/software/gawk/manual/html_node/Clones.html

▪ cut

▪ egrep

▪ id

▪ sort

▪ split

▪ tee

▪ uniq

▪ wc

https://www.gnu.org/software/gawk/manual/html_node/Built_002din.html
https://www.gnu.org/software/gawk/manual/html_node/Clones.html

awk: built-in utilities examples

➢ Calls to these utilities must be surrounded by double quotes.

➢ Example: get the number of running jobs per user, in sorted order

 $ awk '$3 == "R" {nrj[$4]+=1}
 BEGIN {print "UID" "#jobs"} print a header
 END { for (uid in nrj) print uid, nrj[uid] | "sort" }' squeue.txt

➢ Example: get the number of running jobs for users, but print only for idx3y –form usernames

 $ awk '$3 == "R" {nrj[$4]+=1}
 BEGIN {print "UID" "#jobs"}
 END { for (uid in nrj) print uid, nrj[uid] | "egrep ^id.3." }' squeue.txt

o Note: in this case egrep only filters the data from the for loop, so we still get the header.

o This program counts all running jobs, although it only displays the ones we want.
What should you modify to only count the number of running jobs for id.3. user IDs? How?

awk: output

➢ You can modify the output separators by setting the corresponding variables.

o E.g. if your data contains whitespaces, separate fields with commas or colons or vice versa.

➢ Example: get the running jobs and sum of number of nodes in use (7th field) per user,

separate output by colons

 $ awk '$5 == "R" {nrj[$4]+=1; nrn[$7]+=$7}

 BEGIN {OFS=":"; print "UID", "run", "nodes"}

 END { for (uid in nrj) print uid, nrj[uid], nrn[uid] | "sort " }'

 squeue.txt

awk: scripts

➢ Write long or frequently re-used awk programs in files and use them with awk -f.

➢ Example: get a comma-separated list of currently running jobs, per user

$ awk -f get_running.awk squeue.txt

$5 == "R" # get_running_jobs.awk
{
 if (length(jobs[$4]) == 0){ # if jobs still empty
 jobs[$4] = $1 # fill it with value of 1st field
 }else{
 jobs[$4] = (jobs[$4] "," $1) # join strings
 }
}
BEGIN {OFS=":"; print "UID", "running jobs"}
END { for (uid in jobs) print uid, jobs[uid] }

awk: scripts

➢ Even better: make the program self-contained

$ chmod +x get_running_exec.awk

$./get_running_exec.awk squeue.txt

#! /usr/bin/env -S awk -f # get_running_jobs_exec.awk

$5 == "R"
{
 if (length(jobs[$4]) == 0){ # if jobs still empty
 jobs[$4] = $1 # fill it with value of 1st field
 } else {
 jobs[$4] = (jobs[$4] "," $1) # join strings
 }
}
BEGIN {OFS=":"; print "UID", "running jobs"}
END { for (uid in jobs) print uid, jobs[uid] }

	Begin
	Slide 1: Introduction to Linux
	Slide 2: Overview
	Slide 3: What is GNU/Linux?
	Slide 4: Available Linux-like environments

	Day 1 — Exploring the command line
	Slide 5: The shell — Part 1
	Slide 6: What is the shell?
	Slide 7: Command line basics
	Slide 8: Hands-on
	Slide 9: Anatomy of a command
	Slide 10: Arguments & options
	Slide 11: Types of commands
	Slide 12: Getting help
	Slide 13: Getting help

	Day 1 — The filesystem
	Slide 14: The filesystem — Part 1
	Slide 15: The filesystem
	Slide 16: The filesystem
	Slide 17: The filesystem
	Slide 18: Navigating the filesystem
	Slide 19: Hands-on
	Slide 20: Manipulating files and directories
	Slide 21: Move, copy and remove
	Slide 22: Using wildcards
	Slide 23: Wildcard expressions
	Slide 24: Hands-on
	Slide 25: Hands-on
	Slide 26: Reading and editing text files

	Day 1 — Userful tools
	Slide 27: Useful tools — Part 1
	Slide 28: Hands-on
	Slide 29: Hands-on
	Slide 30: Download & extract files
	Slide 31: Comparing files and directories
	Slide 32: Hands-on
	Slide 33: Processing text-formatted structured data

	Day 1 — Redirection & pipelines
	Slide 34: Pipelines & scripts — Part 1
	Slide 35: Streams, redirection, pipelines
	Slide 36: Output redirection
	Slide 37: Output redirection
	Slide 38: Input redirection
	Slide 39: Pipelines
	Slide 40: Hands-on
	Slide 41: Hands-on
	Slide 42: Hands-on
	Slide 43: Hands-on
	Slide 44: Overview of frequently used commands
	Slide 45: Sneak preview — Shell scripts

	Day 2 — The environment
	Slide 46: The environment
	Slide 47: Environment variables
	Slide 48: Environment variables
	Slide 49: Aliases
	Slide 50: Environment startup

	Day 2 — The shell
	Slide 51: The shell — Part 2
	Slide 52: Shell expansions
	Slide 53: Shell expansions
	Slide 54: Shell expansions
	Slide 55: Shell expansions

	Day 2 — Regular expressions
	Slide 56: Useful tools — Part 2
	Slide 57: Regular expressions
	Slide 58: Regular expressions
	Slide 59: Regular expressions
	Slide 61: Regular expressions Metacharacters
	Slide 62: Regular expressions Character classes
	Slide 63: Regular expressions Repetitions
	Slide 64: Regular expressions Sub-expressions, alternatives
	Slide 65: Regular expressions Basic vs. extended regular expressions
	Slide 66: Regex: overview
	Slide 67: Hands-on
	Slide 68: Find and replace with regex
	Slide 69: Hands-on
	Slide 70: Find and replace with regex
	Slide 71: Other useful sed commands

	Day 2 — Ownership & permissions
	Slide 74: The filesystem — Part 2
	Slide 75: Ownership & permissions
	Slide 76: Ownership & permissions
	Slide 77: Setting permissions
	Slide 78: Change ownership

	Day 2 — Running programs
	Slide 79: Running programs
	Slide 80: Processes and threads
	Slide 81: Processes and threads Looking at processes
	Slide 82: Processes and threads Managing processes
	Slide 83: Processes and threads Managing processes
	Slide 84: Processes and threads Terminating processes
	Slide 86: Scripting — Part 2
	Slide 87: Shell scripts
	Slide 88: Shell scripts
	Slide 89: Shell scripts
	Slide 90: Shell scripts
	Slide 91: Shell scripts
	Slide 92: Command line arguments
	Slide 93: For loop
	Slide 94: For loop
	Slide 95: Hands-on
	Slide 96: Hands-on
	Slide 97: Hands-on

	And now, the end is near...
	Slide 99: Course feedback
	Slide 100: Links
	Slide 101: More training

	Day 2 — Supplemental material
	Slide 102: Supplemental material
	Slide 103: if
	Slide 104: if
	Slide 105: if: test expressions
	Slide 106: test expressions: files
	Slide 107: test: text strings
	Slide 108: test: integers
	Slide 109: test: combining
	Slide 110: while
	Slide 111: while
	Slide 112: for
	Slide 113: for
	Slide 114: for
	Slide 115: read
	Slide 116: Command line arguments
	Slide 117: Command line arguments
	Slide 118: Command line arguments
	Slide 119: case
	Slide 120: break and continue
	Slide 121: Functions
	Slide 122: Debugging
	Slide 123: Debugging

	Day 2 — More useful tools
	Slide 124: More useful tools — Part 3
	Slide 125: Screen
	Slide 126: Screen
	Slide 127: rsync
	Slide 128: rsync: files
	Slide 129: rsync: directories
	Slide 130: awk
	Slide 131: awk: patterns
	Slide 132: awk: actions
	Slide 133: awk: examples
	Slide 134: awk: variables
	Slide 135: awk: examples
	Slide 136: awk: built-in functions and utilities
	Slide 137: awk: built-in utilities examples
	Slide 138: awk: output
	Slide 139: awk: scripts
	Slide 140: awk: scripts

