
vscentrum.be

Introduction to Linux
Stefan Becuwe, Franky Backeljauw, Kurt Lust, Carl Mensch,

Michele Pugno, Bert Tijskens, Robin Verschoren

Version Spring 2024

Goals of this course

Ø The VSC clusters, like most HPC clusters worldwide, use Linux-based operating systems.

Ø Basic concepts:

o Files and the file system

o Processes, threads

Ø Using the command-line

o Starting (and stopping!) programs

o Files and directories: find, read, create, write, move, copy, delete, …

Ø Scripts: store a series of commands in a file, so we can (re-)use them later.

Linux-like environments

Ø Microsoft Windows

o Microsoft Subsystem for Linux (WSL) (≥ Windows 10):
https://docs.microsoft.com/en-us/windows/wsl/

o MobaXterm: https://mobaxterm.mobatek.net

Ø macOS

o Terminal app (or iTerm2)
o For identical commands: install GNU tools using Homebrew (brew.sh) or MacPorts (macports.org)

e.g. brew install coreutils findutils gnu-tar gnu-sed grep wget
and use (GNU) gsed instead of (BSD) sed

Ø or in your browser:

o www.tutorialspoint.com/unix_terminal_online.php

https://docs.microsoft.com/en-us/windows/wsl/
https://mobaxterm.mobatek.net/
http://brew.sh/
http://macports.org/
http://www.tutorialspoint.com/unix_terminal_online.php

What is the shell?

Ø A program

Ø “Command line interpreter”: waits for input and performs requested tasks.

Ø Input language is a scripting language (variables, iterations, ...)

Ø Provides access to 100s of commands.

Ø Different shell programs exist.

o On most Linux systems, the default shell is called Bash (Bourne Again Shell).

o On macOS, the default shell is zsh. However, bash should still be installed by default.

Command line basics

Ø $ and text preceding it is called the “prompt”

Ø Type a command after the prompt and press the Enter key

Ø Autocompletion: type part of the command and press the Tab key (↹)

e.g. $ ls -l /etc/host↹

Ø Case sensitive (myfile vs myFile)

o macOS is case insensitive by default.

Ø Spaces separate parts of command (myfile vs my file)

Ø Edit command: use arrow keys Left← and Right→

Ø Command history: use arrow keys Up ↑ and Down ↓

Ø Copy/Paste: Ctrl + Shift + c and Ctrl + Shift + v

Hands-on

o echo Hello, world.

o date

o date --utc

o cal

o whoami

o hostname

o uptime

o clear

o sleep 3

o time sleep 3

o who

o echo $SHELL

o echo -n Hello, world.

Ø Enter the following commands and try to interpret the output

Anatomy of a command

Ø Single command:

$ command

Ø Arguments: tell a command what to do and how

$ command argument1 argument2 [...]

Ø Options: arguments starting with a dash - modify a command’s behavior

$ command -option
$ command --long-option

Ø In general:

$ command [-option]... [--long-option]... [argument]...

Command line arguments

Ø Interpreted by the command itself → usage depends on the command

o Order of arguments often doesn’t matter.
o Convention: options first, non-option arguments last.
o Short options can be combined, i.e. $ date -R -u = $ date -Ru
o For some commands, strict rules apply, e.g. find

Ø Meaning of arguments

o Non-option argument: often a file name

$ less myfile.txt

o But not always:

$ echo This is an example
$ date +"%A %e %B"

Types of commands

Ø A command can be

o Any program (or script) on the system

o A built-in shell command

o An alias: user-defined shorthand for more complex command.

o A (user-defined) shell function.

Types of commands: examples

Ø Use the command type to learn about other commands, e.g.

o $ type date
o $ type cd
o $ type type
o $ type ls

Ø Use the command which to see where a binary or builtin is located, e.g.

o $ which cd
o $ which date

Ø Use the command alias to see defined shortcuts, e.g.

o $ alias (list all aliases)
o $ alias ls (if ls is an alias)

Getting help

Ø Documentation is available online at https://www.kernel.org/doc/man-pages/

or from the command line itself

Ø For shell built-ins: help

$ help cd

Ø Manual pages for commands:

$ man ls

Ø More elaborate: info manuals (also available on the web):

$ info ls
$ info info

Ø Ask a command about its use with the --help or -h option (if available):

https://www.kernel.org/doc/man-pages/

Reading man pages

Ø Scrolling: ↓ / ↑ or j / k

Ø Search for word: / "word" Enter

Ø Find next occurrence of word: n , previous: N

Ø Help for man page viewer: h

Ø Quit man page: q

Ø Conventions for describing keys

^-<key> = Ctrl + <key>

C-<key> = Ctrl + <key>

M-<key> = Alt + <key>

Searching man pages
Ø Example: searching in $ man bash

Ø /Commands for Moving Enter Searches for words “Commands for Moving”

Key combination Action

Ctrl + a (beginning-of-line) Move to the start of current line.

Ctrl + e (end-of-line) Move to the end of the line.

Ctrl + f (forward-char) Move forward a character.

Ctrl + b (backward-char) Move backward a character.

Alt + f (forward-word) Move forward to the end of the next word.

Alt + b (backward-word) Move back to the start of current or previous
word.

Ctrl + l (clear-screen) Clear the screen, leaving the current line at the
top of the screen.

The filesystem

Ø All data is stored on the file system, a tree of directories and files.
(“directory”: file containing a list of other files)

Ø A file name describes a location in the file system, e.g.

o /home/student/introlinux/scripts
o /tmp/myfile.txt
o /

Ø Directories are separated by / (Windows uses \).

Ø A single / is the “root” directory (compare to C:\ on Windows).

Ø Some commonly used directories (see “Filesystem Hierarchy Standard”):

o /home/<username>: “home” directory, user’s personal disk space.
o /tmp: temporary files
o /bin: essential programs

The filesystem

Ø File name starting with / is an absolute file name.

Ø Otherwise: relative file name: a path starting from the current working directory.

Ø $ pwd prints the current working directory (at login usually your home directory).

Ø Example: relative path from directory /home/student:

introlinux = /home/student/introlinux
introlinux/scripts = /home/student/introlinux/scripts

Ø Use .. to refer to a parent directory. Starting from /home/student:

.. = /home

../.. = /

../anotheruser = /home/anotheruser

The filesystem

Ø Use $ cd <directory> to change the current directory, e.g.

$ cd Downloads
$ cd ../Documents
$ cd - (go back to the previous directory)
$ cd (go to your home directory)

Ø $ ls (without arguments) lists the current directory’s contents.

Ø ~ (“tilde”) is a shorthand for the absolute path to your home directory.
$ echo ~ = $ echo /home/<username>
$ cd ~/Downloads = $ cd /home/<username>/Downloads

Ø A single . points to the current directory.

$ cd ./Downloads = $ cd Downloads

Example

Ø Try out the following commands

$ cd
$ ls
$ cd Documents
$ pwd
$ cd ..
$ cd ./Documents
$ pwd
$ cd /bin
$ ls
$ pwd
$ cd ~
$ pwd
$ cd -
$ pwd

Hands-on

Ø Exercise: Download and extract the following archive files:

o https://calcua.uantwerpen.be/courses/introduction-to-linux/input.zip
o https://calcua.uantwerpen.be/courses/introduction-to-linux/scripts.zip

Ø Version 1:

o Point your web browser to https://calcua.uantwerpen.be/courses/introduction-to-linux
o Download both files.
o Extract their contents using the file manager.
o List the files using the cd and ls commands.

Ø Version 2: Use only the following commands (and copy/paste):

o wget https://[...].zip to download the files.
o unzip to extract their contents.
o cd and ls to list the extracted files.

https://calcua.uantwerpen.be/courses/introduction-to-linux/input.zip
https://calcua.uantwerpen.be/courses/introduction-to-linux/scripts.zip
https://calcua.uantwerpen.be/courses/introduction-to-linux

Wildcards

Ø Many commands use lists of file names, e.g.

$ zip textfiles.zip file1.txt file2.txt ... file100.txt

Ø Wildcards help us generate such lists. Example:

$ zip textfiles.zip file*.txt

Ø Bash replaces file*.txt by the list of matching files.

Ø * matches everything → file*.txt matches any filename which

o starts with file

o ends with .txt

Wildcard types

Ø * Any sequence of (0 or more) characters.

file*.txt → file.txt file_copy.txt file1.txt ...

Ø ? Any single character.

file?.txt → file1.txt file2.txt ... files.txt

Ø [set of characters]

Any single character from the given set.

[fF]ile.txt→ file.txt File.txt

Ø [!set of characters]

Any single character not from the given set.

file[!123].txt → file4.txt file5.txt ... files.txt

Ø Predefined character classes exist for [] wildcard expressions:

Ø [[:class:]] matches any single character of the class

Ø Example classes:

o [:alpha:] Alphabetic character
o [:alnum:] Alphanumeric character
o [:digit:] Digit 0-9
o [:lower:] Lower-case letter
o [:upper:] Upper-case letter
o [:space:] Whitespace (space, tab, newline, ...)
o [:punct:] Punctuation

Ø file[[:lower:]].txt matches filea.txt fileb.txt ... filez.txt

Ø For a complete list, look up “POSIX character classes"

Character classes

Hands-on: wildcards

Ø Exercise: which names match the following patterns?

o [abcdefghijk]*.pdf

o [[:digit:]]*.doc

o backup.[0-9][0-9][123]

o file[[:lower:]123].txt

1. Think of an example file name for the pattern.

 file[[:upper:]].txt fileA.txt matches?

2. Create the file using the command touch:

 $ touch fileA.txt Creates empty file called fileA.txt.

3. Try it out:
 $ ls file[[:upper:]].txt
 fileA.txt The file appears, success!

Manipulating files and directories

Ø Warning: when deleting/copying/moving files at the command line,

there is no “recycle bin" or undo!

Ø mkdir: create directories

$ mkdir dir1 dir2 dir3

Ø mkdir -p: create nested directories

$ mkdir -p topdir/subdir/subsubdir

Ø rmdir: remove empty directories

$ rmdir dir1 dir2 dir3

Move, copy, remove

Ø $ mv source target: move (rename) files and directories:

o If target is existing file: overwrite it.
o If target is existing directory: move inside it.
o $ mv src1 src2 ... srcn targetdir move a list of items into existing directory targetdir

Ø $ cp source target: copy files and directories:

o Same rules as mv, except:
$ cp srcdir target
cp: omitting directory ‘srcdir’

o $ cp -r srcdir target: recursive, copy directories + contents

Ø $ rm file1 file2 ... filen: remove (erase) file(-s)

o $ rm -r mydir : recursive, delete directories + contents

With wildcards

Ø Together with wildcards: very efficient

$ mv *.jpeg Photos

Ø But remember: no “recycle bin" or undo!

→ typing mistake can be dangerous

Ø Safety for cp, mv and rm:

option -i or --interactive – ask for confirmation before overwriting or deleting.

Ø Example:

$ rm -i file*.txt
rm: remove regular file ‘file1.txt’?→ y <Enter> to confirm

Ownership & permissions

Ø Every user has a unique id / name and belongs to one or more groups.

Ø To see your id and groups, run $ id

o uid: your user id
o gid: primary group id
o groups: list of all groups you are a member of

Ø Every file or directory belongs to a user and a group with different access permissions for

o user
o group
o others (= all other users who are not a member of the file’s group)

Ø Use ls -l to see ownership and permissions. Example:
$ ls -l scripts
total 512
-rwxr-xr-x 1 vsc20xxx antwerpenall 76 Feb 8 12:43 script01.sh
...
permissions user group size modif.time filename

Ø rwxr-xr-x: three kinds of permissions for “user,” “group” and “others”

o read: read file’s contents
o write: modify file’s contents
o execute: run file as a program

Ø For directories

o x: enter the directory and access contents
o r: list directory contents
o w: create, delete, rename files (also needs x)

Setting permissions

Ø $ chmod can change the permissions for files or directories.

Ø Set rwx permissions using chmod =

o $ chmod =rw file.txt give all users rw- permissions.
o $ chmod u=rw,g=r,o= file.txt set permissions for user, group and others

Ø Or use the numbers: 0=none, 1=x, 2=w, 3=wx, 4=r, 5=rx, 6=rw, 7=rwx

o $ chmod 640 file.txt

Ø Add/remove permissions using chmod + or chmod -

o $ chmod +w file.txt add w permission for all users
o $ chmod ug+x,o-r file.txt

Ø -R Recursive: change permissions on a directory and all its contents:

o $ chmod -R go-xr my_private_dir

Processes and threads

Ø A process is a running instance of a program.

Ø Several instances of the same program can run at the same time.

Ø Each process has a unique identifier or PID.

Ø One process can start other processes, child processes.

Ø A process can not access other processes’ memory.

Ø Each process consists of one or more threads.

o Threads share access to the process’ memory.
o Different threads can run in parallel on different CPU cores.

Ø To run a calculation on multiple CPU cores, we can use

o multiple processes (“distributed memory parallelism”)
o multiple threads in one process (“shared memory”)

Looking at processes

Ø The command ps prints information on running processes

o $ ps show processes in current shell
$ ps
PID TTY TIME CMD

8627 pts/12 00:00:00 bash
19621 pts/12 00:00:00 ps

o $ ps x show all processes of current user
o $ ps ax show all processes of all users
o $ ps u show username, CPU and memory usage

(can be combined with previous, e.g. $ ps axu)
o $ ps -u <username> show processes of the given user
o $ ps -T show the threads of each process

Ø The commands top or htop show processes together with CPU and memory usage in real time.

Ø Terminate processes

Ø Stop and resume processes

Ø Run processes in background

Ø Example: run xclock with $ xclock -update 1

The process is started, you have no prompt.

Ø To terminate the foreground process, press Ctrl + c

xclock disappears, the prompt returns.

Ø To stop (pause) the foreground process, press Ctrl + z

The process is stopped in the background, the prompt returns.
$ fg process resumes in the foreground.
$ bg process continues in the background.

Managing processes

Ø To start a process in the background, terminate the command by &

$ xclock -update 1 & bash prints the job number and PID, e.g. [1] 9582

Ø Multiple background jobs: use $ jobs to see a list:

$ xclock -update 1 &
[1] 9582
$ xclock -update 1 &
[2] 9588
$ jobs
[1]- Running xclock -update 1 &
[2]+ Running xclock -update 1 &

Ø Use the job number to control different processes, e.g.

$ fg %2 run job 2 in the foreground

Managing processes

Terminate a process

Ø Reminder: Ctrl + c terminates the foreground process.

Ø Use the command kill <PID> to terminate any process (owned by you)

$ kill 12345 Terminate process with id 12345.
The process may belong to another shell.

Ø kill %<jobnum> terminates a background process:

$ kill %2 Terminate job 2, with time for cleanup.

$ kill -KILL %2 Terminate job 2 immediately.

Ø Use $ kill -STOP and $ kill -CONT to pause/resume processes.

Threads

Ø The example program omp_pi can run with multiple threads:

$ OMP_NUM_THREADS=4 ./omp_pi

Ø $ ps -T displays each process’ threads:

$ ps -T
PID SPID TTY TIME CMD
17058 17058 pts/3 00:00:32 omp_pi
17058 17059 pts/3 00:00:32 omp_pi
17058 17060 pts/3 00:00:32 omp_pi
17058 17061 pts/3 00:00:33 omp_pi
...

Ø $ top -H displays CPU usage for each thread in real time.

Ø When running top, hit f to display other info (e.g. CPU number).

Streams, redirection, pipelines

Ø Output of commands is shown in the terminal; some commands read input from the keyboard.

This is managed using file descriptors:

o Normal output is written to standard output (stdout), fd 1.
o Warnings and errors are written to standard error (stderr), fd 2.
o Commands can read from standard input (stdin), fd 0.

Ø By default, “stdout” and “stderr” file descriptors are attached to terminal,

“stdin” is read from the keyboard.

Ø We can redirect output and input:

o write output to a file
o send output from one command to input of another command
o read stdin from a file

Output redirection

Ø The operator i> redirects file descriptor i to a file.

Example: $ ls 1> ls-output.txt

o File ls-output.txt is created, contains the command’s output.
o stderr still shown in terminal
o Inspect the file with $ less ls-output.txt

Ø Redirect stderr:

$ ls wrong-filename 2> ls-error.txt

Ø Multiple redirections for one command:

$ ls *.txt *.jpg 1> ls-output.txt 2> ls-errors.txt

Ø > without fd number redirects stdout (stderr still shown in terminal):

$ ls > ls-output.txt

Ø /dev/null is a special “file” that discards everything written to it.

E.g. to hide a program’s output: $./omp_pi > /dev/null

Ø Note: > creates a new file

o Existing file with same name is replaced (!)
o If command produces no output: empty file.

Ø 1>> and 2>> append stdout or stderr to the end of a file, without erasing previous content.

$ date >> diary.txt
$ echo "Dear diary, today ..." >> diary.txt

Ø i>&j: attach file descriptor i to the same file as descriptor j

$ ls *.txt *.jpg > ls-all1.txt 2>&1 write stdout and stderr to the same file
$ ls *.txt *.jpg 2>&1 > ls-all2.txt only stdout written to file

Output redirection

Input redirection

Ø Standard input (fd 0) is read from the keyboard. Example: try $ bc.

Ø The input redirection operator < filename opens a file, from which the program now reads

standard input:

$ echo "2 * 17" > homework.txt
$ bc < homework.txt
34

Ø Most commands also accept a file name as an argument. e.g., these commands have the same

result:

$ less homework.txt
$ less < homework.txt

Ø Redirecting input and output:

$ bc < homework.txt > answers.txt

Pipelines

Ø We can chain 2 or more commands with the | (“pipe”) operator:

$ command1 | command2 | command3 [| ...]

stdout from command1 is directly sent to stdin of command2, etc.

Ø Commands run in parallel, each command processes input as it becomes available.

Ø Example: scrolling through the list of all processes with $ less.

$ ps aux | less

Ø Create complex commands from simple building blocks.

Ø Note: to pipe stderr from a command, redirect it to stdout:

$ command1 2>&1 | command2

Frequently used commands

Typical commands for pipelines:

Ø wc print the number of lines, words and bytes of input

Ø grep filter lines which match a given search pattern

Ø head / tail print first/last lines of input

Ø sort sort input alphabetically

Ø uniq report or leave out repeated lines

Ø sed transform input (pattern replacement and more)

Ø awk text pattern scanning and processing

Ø Find more commands at https://www.gnu.org/software/coreutils/manual/

https://www.gnu.org/software/coreutils/manual/

Hands-on: pipelines

Ø Build pipelines with ps, head / tail, grep and wc to find out

o What is the name of the first process (PID 1)?
o How many processes are not owned by user root?

Ø Using the file chemistry.txt in the input folder, and the commands wc, grep, sort, tail and
uniq, answer the following:
o How many courses are there?
o Which courses are taught by Wouter Herrebout in the first semester?
o Which are, in alphabetical order, the last 5 course codes starting with 1001WET?
§ alphabetically sorted by course code, or
§ alphabetically sorted by course title

o Which course is listed twice?

Inside the shell

Shell: expansion

Ø “Each time you type a command line and press the Enter key, bash performs several processes

upon the text before it carries out your command. The process that makes this happen is called

expansion.”

1. Brace expansion (e.g. {my,your}file -> myfile yourfile)
2. “~” expansion (e.g. cd ~→ cd /home/username)
3. Variable expansion (e.g. $HOME → /home/username)
4. Arithmetic expansion (e.g. $((2 + 2))→ 4)
5. Command substitution (e.g. $(pwd) → /path/to/this/dir)
6. Word splitting (e.g. grep 1e semester vs grep '1e semester')
7. Filename expansion (e.g. ls file.* → ls file.txt file.jpg)
8. Quote removal

Shell: brace expansion

Ø {} brace expansion

o List:

$ echo Front-{A,B,C}-Back

o Sequences:

$ echo {Z..A}

$ mkdir {07..09}-0{1..9} {07..09}-{10..12}

o Nested:

$ echo a{A{1,2},B{3,4}}b

Shell: “~” expansion

Ø Tilde (~) expansion:

o $ echo ~

your own home directory

o $ echo ~user2

user2’s home directory

Shell: filename expansion

Ø Filename expansion: wildcards are expanded into matching file names

o $ echo *

* is expanded (non-hidden files in current directory) before echo is executed.

o $ echo ~/.[a-z]*

Shell: arithmetic expansion

Ø Arithmetic expansion: $((expression))→ result of expression

$ echo $((10 + 5 + 3))

o arithmetic expression (only integers in bash!)

o operators:

+ addition
- subtraction
* multiplication
/ integer division
% remainder
** exponentiation

o single parentheses may be used to group multiple subexpressions:

$ echo $(((5**2) * (3*4)))

Shell: variable expansion
Ø Variable expansion: $variable_name → variable’s current value

Optional {}: ${variable_name}
$ echo $USER
$ set display all variables
$ echo $SUER what if variable doesn’t exist?
$ echo ${USER}_home
$ echo $USER_home doesn’t work without {}!
$ myvar='Hello, world!' set a variable
$ echo $myvar

Shell: command substitution

Ø Command substitution: expand $(command) to output of command

$ echo We are now $(date)
$ echo I see $(ls -A | wc -l) files and subdirs

equivalent – but old-fashioned:
$ echo I see `ls -A | wc -l` files and subdirs

Shell: escapes & quotes

Ø $ echo The total is $100.00 # ?!

Ø Use “escape” character \ for literal use of special characters ($, \, `, {, }, (,), *, ␣)

$ echo The total is \$100.00

Ø Text inside double quotes "": special characters lose their meaning, EXCEPT $, \ and `
$ touch "two words.txt"
$ ls -l two words.txt
$ ls -l "two words.txt"
$ ls -l two\ words.txt
$ ls -l two↹

$ echo "$USER $((2+2)) $(cal)"
$ echo "The total is \$100.00"

Shell: escapes & quotes

Ø No expansion at all inside single quotes, compare:

$ echo text ~/*.txt {a,b} $(echo foo) $((2+2)) $USER

$ echo "text ~/*.txt {a,b} $(echo foo) $((2+2)) $USER"

$ echo 'text ~/*.txt {a,b} $(echo foo) $((2+2)) $USER'

Ø Word splitting: words separated by space become separate arguments

$ ls my directory
$ ls 'my directory'

Ø Quote removal: after all expansions, but before executing the command, quotes are removed.

$ echo "hello world"

o unless you escape or quote the quotes...

$ echo \"hello\" '"world"'

Hands on: find

Ø The command find can search files on your file system based on various criteria

(see reference, or $ man find ...).

Ø Build a pipeline with find to count the total number of files and directories in your home

directory (and its subdirectories).

Ø Show the result using echo, i.e. print a message like

/home/student contains <x> files and directories.

o How to count regular files and directories separately?

o How to find a file with a specific name?

The environment

Environment variables

Ø Recall: the shell has variables

o set value for variable myvar:

$ myvar=some_value no spaces around ‘=’, no spaces in some_value unless using quotes

o get myvar’s value (“variable expansion”):

$ echo $myvar

o “Plain” variables: only exist in the shell itself

$ set display all variables

o Environment variables are special: passed on to processes started from the shell.
$ export myvar make myvar an environment variable
$ printenv display environment variables

o Environment variables are another way to influence the behaviour of programs
(e.g. OMP_NUM_THREADS).

Environment variables
Ø EDITOR The name of the program to be used for text editing.
Ø SHELL The name of your shell program.
Ø HOME The pathname of your home directory.
Ø LANG Defines the character set and collation order of your language.
Ø PWD The current working directory.
Ø OLDPWD The previous working directory.
Ø PATH A colon-separated list of directories that are searched when you enter the name of

an executable program.
Ø PS1 Prompt String 1. This defines the contents of your shell prompt.
Ø USER Your username.
Ø TMPDIR Directory for temporary files

Environment

Ø Example: access environment variables from a Python script:

$ python3 -c 'import os

> print("hi there,", os.getenv("USER"), "!")

> '

Environment

Ø Persistent settings for your environment:

o Applied once at login:

§ /etc/profile (system wide, for all users)

§ ~/.bash_profile

§ ~/.bash_login

§ ~/.profile

o Applied every time you start a shell:

§ ~/.bashrc

see also bash manual page under “INVOCATION”

You can also define your own aliases and functions here.

alias

Ø Substitute a string for the first word of a simple command

Ø $ alias <name>=<value> means that $ <name> will be replaced by $ <value>

Ø Handy to set default options and simplify your commands

$ alias ls="ls -F --color=auto" append filetype indicator, colorize output

$ alias lart="ls -Falrt --color=auto" show hidden files, recently modified first

Ø $ unalias <name> removes the alias for <name> (in the current shell)

Ø $ unalias -a removes all aliases (in the current shell)

Writing shell scripts

Shell scripts

Ø shell script = text file containing a series of commands

Ø Example file “myscript.sh”

$ bash myscript.sh

Ø Commands are executed one after the other, just as if you entered them manually

Ø Commands are separated by new lines, or by semicolon ‘;’

my_analysis input.data > my_results/science.txt
tar -cvzf my_results.tar.gz my_results
rm input.data

Editing text

Ø Editors available on (almost) any Linux system, run inside terminal, syntax highlighting included

o nano – simple editor
§ open (“read”) = Ctrl + r
§ save (“write out”) = Ctrl + o
§ exit = Ctrl + x

o vi – the default Unix editor. Takes some practice.
§ vim: “vi improved”, run vimtutor for a quick tutorial or look for a “cheat sheet”

o emacs – more advanced editor
Ø Others
o Visual Studio Code – versatile, portable (https://code.visualstudio.com/)
o gedit – GNOME text editor
o notepad++ – available for Windows (https://notepad-plus-plus.org)
o TextEdit – comes with macOS (use “plain text” format for scripts)
o ...

https://code.visualstudio.com/
https://notepad-plus-plus.org/

Editing text
Ø Remark: line endings are encoded differently under Windows and Unix.

This might introduce some problems for text files (especially job scripts).
If you created your script file in a Windows environment, we advise to convert your “Windows
style” (“carriage return + line feed”) file into a “Unix style” (“newline”) file in the following way:

$ dos2unix filename

Ø Beware: filename will be overwritten!

o Can be avoided by using the -n option

$ dos2unix -n inputfilename outputfilename

Ø A suitable text editor can do this as well

Shell scripts

Ø $ cat scripts/script01.sh

$ bash script01.sh call the interpreter (bash) ourselves

$ chmod +x script01.sh

$ script01.sh doesn’t work because work dir is not in PATH!

$./script01.sh the interpreter from the ‘shebang’ is used

#! /bin/bash

This is our first script.

echo 'Hello World!' # comment

“shebang”

Shell scripts

Ø #! is called “shebang”. It tells the system which interpreter should execute the script.

For a bash script:

#!/bin/bash

Ø This works for any scripting language, not just bash. Example for Python:

#!/usr/bin/python3 uses that specific Python executable

o or preferably:

#!/usr/bin/env python3 uses the first python3 found in PATH

o PATH is modified when using software modules (see HPC@UAntwerp).

Ø Spaces (between parts) are optional

#!/bin/bash = #! /bin/bash = #! /bin/bash

Shell scripts

Ø Remarks:

o User variables can not start with a digit: $1, $2, ... are special variables

(command line arguments, see later)

o Setting a variable: without $, e.g., myname=some_value

§ Remember: no spaces around =

o Variable expansion: with $, e.g., echo $myname

#!/bin/bash # script02.sh

currenttime=$(date +"%x %r %Z")
myname=$USER

echo "id: $myname, current time: $currenttime"

Checking commands

Ø How to detect and handle errors in a script?

Ø A finished command has an exit status. Convention:
o success → exit status 0
o error → exit status non-zero (status values differ for each command)

Ø The special variable “?” holds the last process’ exit status:

$ ls existing_file
existing_file
$ echo $?
0
$ ls missing
ls: cannot access missing: No such file or directory
$ echo $?
2
$ echo $?
0

if

Ø Example:

 if ls file.txt
 then echo "That file exists."
 else echo "That file doesn't exist."
 fi

Ø Generic form

 if test1; then commands1
 elif test2; then commands2
 elif ...
 else commandsn
 fi

if

Ø Most frequently used command with if is

if test expression

or its equivalent form

if [expression]

Ø bash has an extended replacement

if [[expression]]

which is easier to use, e.g. in combination with variables

if: test expressions

equivalent to:

if test $x -eq 5; then ...

if [[$x -eq 5]]; then ...

#!/bin/bash # script04.sh

x=5
if [$x -eq 5] ; then
 echo "x equals 5."
else
 echo "x does not equal 5."
fi

test expressions: files

file1 -nt file2 file1 is newer than file2

file1 -ot file2 file1 is older than file2

-d file file exists and is a directory

-f file file exists and is a regular file

-s file file exists and has size > 0

-L file file exists and is a symbolic link

-r file file exists and is readable

-w file file exists and is writable

-x file file exists and is executable

...

Ø Search for “bash file test operators” (or man test) to see more exotic ones...

test: text strings

-n string the length of the string > 0

-z string the length of the string = 0

string1 = string2 strings are equal

string1 != string2 strings are not equal

string1 > string2 string1 sorts after string2

string1 < string2 string1 sorts before string2

test: integers

int1 -eq int2 int1 = int2

int1 -ne int2 int1 ≠ int2

int1 -le int2 int1 ≤ int2

int1 -lt int2 int1 < int2

int1 -ge int2 int1 ≥ int2

int1 -gt int2 int1 > int2

test: combining

Ø Combining test expressions:

Ø Example:

if [[$((x % 5)) -eq 0 && $((x % 2)) -eq 0]]
then

echo "$x is a multiple of 10"
fi

[] [[]]

AND -a &&
OR -o ||
NOT ! !

read

Ø Create variables and read their values from standard input

Ø Remarks:

o -n prevents echo from printing a new line
o extended version: see script05a.sh

#!/bin/bash # script05.sh

echo -n "Please enter an integer -> "
read int

echo -n "Enter one or more values > "
read var1 var2 var3 var4 var5

echo "int = ${int}, var1 = ${var1}, ..."

while

Ø while test; do commands; done

#!/bin/bash # script06.sh

count=1
while [$count -le 5]; do
 echo $count
 count=$((count + 1))
done
echo "value of count: $count"

echo "Finished."

while

Ø Alternatively (one-liner at prompt):

$ cat squeue.txt | while read line; do ... done

Ø Combining while and read: easy (quick & dirty) way to process lines of output

(no worries about how many spaces separate fields).

Ø squeue.txt can be found in the input folder

#!/bin/bash # script06b.sh

while read jobid partition jobname user state rest; do
 echo $jobid $state
done < squeue.txt

Command line arguments

$./script07.sh these are four arguments

$./script07.sh 'this is a single argument'

Ø � More than 9 args? Use shift (see next slide) or ${10}, ${11}, ...

Ø Last arg? ${!#} or $BASH_ARGV (Bash only) or ${@: -1}

o Space in ${@: -1} is required to avoid confusion with :- expansion

#!/bin/bash # script07.sh

echo "Number of arguments: $#
\$0 = $0
\$1 = $1
\$2 = $2
...
\$9 = $9 "

Command line arguments
#!/bin/bash # script08.sh

echo "first argument in list: $1"
echo "last argument in list: ${@: -1}"

count=1
while [[$# -gt 0]]; do
 echo "Nr of arguments left = $#"
 echo "Argument $count = $1"
 count=$((count + 1))
 shift
done

Command line arguments

Ø Each time shift is executed, the value of $# is reduced by one,

the value of $2 is moved to $1, the value of $3 is moved to $2, etc.

$1 …$2 ${n-1} $n

A …B Y Z

$1 …$2 ${n-1} $n

B …C Z <empty>

shift

for

for variable in words; do commands; done

Ø words can be any bash expression resulting in a list, e.g.

for file in *.txt; do ... done loop over each txt file

Ø if “in words” is omitted, for loops over the command line arguments

#!/bin/bash # script09.sh
for i in A B C D; do
 echo $i
done

for

#!/bin/bash # script09b.sh

for i in $(seq 1 10); do
 echo $i
done

for i in $(seq 11 0.75 20); do
 echo $i
done

for i in {21..30}; do
 echo $i
done

for
#!/bin/bash # script10.sh

for i; do
 if [[-r $i]]; then
 max_word=
 max_len=0
 for j in $(strings -n 2 $i); do
 len=${#j}
 if [[$len -gt $max_len]]; then
 max_len=$len
 max_word=$j
 fi
 done
 echo "$i: '$max_word' ($max_len characters)"
 fi
done

case
case word in
pattern1) commands1 ;;
pattern2) commands2 ;;
...
patternn) commands_n ;;

esac

#!/bin/bash # script11.sh

read -p "enter word > "
case $REPLY in
 [[:alpha:]]) echo "single alphabetic character." ;;
 [ABC][0-9]) echo "A, B, or C followed by digit." ;;
 ???) echo "is three characters long." ;;
 *.txt) echo "is a word ending in '.txt'" ;;
 *) echo "is something else." ;;
esac

break and continue
#!/bin/bash # script12.sh
while echo -n "enter number: "; read NUM
do
 if [$NUM -eq $NUM] 2>/dev/null; then
 :
 else
 echo " $NUM is not a number"
 continue
 fi
 if [[$(($NUM % 2)) -eq 0]]; then
 echo " $NUM is an even number"
 continue
 fi
 echo " $NUM is an odd number"
 break
done

no-op

Functions

Ø Useful for sequence of commands that is often repeated

Ø Functions can also take arguments

Ø Example using functions defined in another file: script03a.sh and script03b.sh

#!/bin/bash # script03.sh
function func { # shell function
 echo "use func for $1"
 return
}

echo "step 1"
func "step 2"
echo "step 3"

Some extra info

Ø Putting set -x at the beginning of your script will print out all steps as they are executed.

It’s a way to follow what’s going on if your script behaves unexpectedly.

Ø Likewise, set –e –u will stop the script if any command fails or when an empty variable is used.

Ø More info on debugging:

www.tldp.org/LDP/Bash-Beginners-Guide/html/sect_02_03.html

Ø More info on bash options such as -x:

www.tldp.org/LDP/abs/html/abs-guide.html#OPTIONS

http://www.tldp.org/LDP/Bash-Beginners-Guide/html/sect_02_03.html
http://www.tldp.org/LDP/abs/html/abs-guide.html

Hands on: scripts

Ø Modify script10.sh in such a way that the longest word in all files is shown,

instead of showing the longest word per file.

Regular expressions

Regular expressions

Ø Example: counting animals in the Bible

$ grep -Eo ' (dragon|serpent|lion|eagle)s? ' bible.txt | sort | uniq -c

10 dragon

4 dragons

10 eagle

3 eagles

43 lion

13 lions

14 serpent

4 serpents

Regular expressions

Ø Often called “regex”

Ø Symbolic notation used to match text patterns.

Ø Similar to wildcards (*, [], ?), but more powerful

Ø Note: many programs and programming languages support regular expressions:

o grep, sed, ...

o Text editors, e.g. emacs

o Python, Perl, Matlab...

o ...

But notation and supported patterns are often slightly different...

Regular expressions

Ø Create some test files to play with regular expressions

$ cd

$ ls /bin > dirlist-bin.txt

$ ls /usr/bin > dirlist-usr-bin.txt

$ ls /sbin > dirlist-sbin.txt

$ ls /usr/sbin > dirlist-usr-sbin.txt

$ touch .zip 1.zip 1zip 22.zip 2zip

Metacharacters

Ø Regex can contain literal characters and digits,

$ grep lion bible.txt

Ø but also “metacharacters” for repetitions, grouping, alternatives, ...

Ø Two notations for metacharacters:

o basic regular expressions (BRE):
^ $. [] * \(\) \{ \} \? \+ \|

o extended regular expressions (ERE – grep -E):
^ $. [] * () { } ? + |

o To turn a metacharacter into a literal character: add ‘\’
$ grep '\$100\.0' accounts.txt
$ grep "\\\$100\\.0" accounts.txt # careful with "" !!!
$ grep '\\\$100\\.0' accounts.txt # careful with '' !!!

Metacharacters

Ø . Match any character

$ grep -h '.zip' dirlist*.txt

vs. ls *zip; ls *.zip; ls | grep .zip

Ø ^ $ anchors: beginning (^) or end ($) of line

$ grep -h '^zip' dirlist*.txt

$ grep -h 'zip$' dirlist*.txt

$ grep -h '^zip$' dirlist*.txt

Character classes

Ø [] character class

[bg]zip matches bzip and gzip

[b-g]zip matches bzip, czip, dzip, ..., gzip

[^bg]zip matches any zip not preceded by b or g

[^b-g]zip matches any zip not preceded by b, ..., g

^[A-Z] matches any word beginning with an upper case letter

^[-AZ] matches any word beginning with -, A or Z

Repetitions

Ø ? Match preceding element zero or one time

Ø * Match preceding element zero or more times

Ø + Match preceding element one or more times

Ø {} (or \{\}) Match preceding element a specific number of times:

{n} exactly n times
{n,m} at least n times, at most m times
{n,} at least n times
{,m} at most m times

Ø Examples:

A* matches <empty string>, A, AA, ...
.* matches any sequence of characters
\$[1-9][0-9]{2,} match any amount of $100 or more

Sub-expressions, alternatives

Ø () sub-expression

(bla)+ matches 1 or more repetitions of bla

Ø | alternatives

bzip|gzip matches bzip and gzip

(b|g)zip matches bzip and gzip, using grouping

(b|g|un)zip matches bzip, gzip and unzip

Ø Examples:

a|b matches lines containing either a or b
a.*b matches lines containing both a and b (in that order)

Ø If using BRE: write \(... \| ... \)

Basic vs. extended regular expressions

Ø Extended regular expressions: grep -E or egrep

Ø Examples:

$ egrep 'Et|Ut' /usr/share/dict/words

$ grep 'Et\|Ut' /usr/share/dict/words

find Et or Ut in /usr/share/dict/words

$ grep -Eh '^(bz|gz|zip)' dirlist*.txt

$ grep -h '^\(bz\|gz\|zip\)' dirlist-*.txt

begins with bz or gz or zip

$ grep -Eh '^bz|gz|zip' dirlist*.txt

$ grep -h '^bz\|gz\|zip' dirlist*.txt

begins with bz or contains gz or contains zip

Hands on: regex

Ø Use the file /usr/share/dict/words:

o How many five letter words do you find?

o Which words start with chemi?

o Which words contain both her and bout? (answer using 1 regular expression)

o Which words start with a capital letter and contain two consecutive letters a?

Ø Give a regular expression which recognizes phone numbers of the following form:

(03) 265 38 60

with or without brackets and spaces. You can find some examples of correct and incorrect

numbers in phonenr.txt

Hands on: squeue

Ø Use the file squeue.txt:

o How many jobs are “Running”?

o How many jobs per user are “Running”?

o How many jobs per user are running, sorted in descending order?

o Give the number of jobs per number of nodes, sorted.

o Give, per user, the number of Running jobs and the number of nodes in use.

Hands on: courses

Ø Use the file chemistry.txt:

o Create one directory per course code (first column).

o Create in each directory a file where the file name is the family name of the first teacher

(take into account spaces).

o Put in each file the name of the course.

Other useful programs

diff

Ø Detect differences between files

-i ignore case
-w ignore all white space
-y output in two columns
-r recursively compare directories

$ diff -i file1 file2
$ diff -y file1 file2
$ diff -r dir1 dir2

$ diff distros.txt distrostab.txt
$ diff -w distros.txt distrostab.txt

sed

Ø Stream editor

o Editing on a stream of text (standard input or set of files) using basic regular expressions

o Typical usage: search and replace

sed 's/regexp/replacement/'

§ By default: only first occurrence on each line;
to replace all occurrences: add ‘g’ at the end

§ By default: case sensitive

o Powerful but somewhat complex

o For larger tasks, you might choose awk, Perl, Python, ...

sed

Ø sed [options] <script> <file>
-n suppress automatic printing of pattern space
-i edit file in place

Ø Script: [line selection] <command>
n[,n2] line number n (until n2)
$ last line
/regex/ lines that match regex

Ø Command:

s/regex/repl/ replace matches for regex by repl
p print current line
a append text after current line
d delete current line
<command>I case insensitive
<command>g ‘global’ -> act on all occurrences on this line

sed

$ echo "front front" | sed 's/front/back/'

$ sed -n '/SUSE/p' distros.txt only matches (equivalent of grep)

$ sed '/SUSE/p' distros.txt everything + matches

$ sed -n '1,5p' distros.txt lines 1 to 5

$ sed '/Fedora/a from Redhat' distros.txt

$ sed '/Fedora/d' distros.txt only non-matches (equivalent of grep -v)

$ sed 's/chemie/scheikunde/I' chemistry.txt

$ sed -i '1d' distros.txt

sed

Ø Rewrite MM/DD/YYYY in distrostab.txt as YYYY-MM-DD.

1. Regular expression for MM/DD/YYYY:

[0-9]{2}/[0-9]{2}/[0-9]{4}$

2. Insert subexpressions:

([0-9]{2})/([0-9]{2})/([0-9]{4})$

3. Construct replacement: \n refers to the n-th subexpression, so we want:

\3-\1-\2

sed

4. Result (do not forget the metacharacters), to be entered on one line, without extra spaces

$ sed 's/\([0-9]\{2\}\)\/\([0-9]\{2\}\)\/\([0-9]\{4\}\)$/\3-\1-\2/' \

distrostab.txt

or, using another delimiter + instead of /,

$ sed 's+\([0-9]\{2\}\)/\([0-9]\{2\}\)/\([0-9]\{4\}\)$+\3-\1-\2+' \

distrostab.txt

or, using ERE instead of BRE,

$ sed -E 's+([0-9]{2})/([0-9]{2})/([0-9]{4})+\3-\1-\2+' distrostab.txt

Screen

Ø Use multiple shell windows from a single SSH session.

Ø Keep a shell active even through network disruptions.

Ø Disconnect and re-connect to shell sessions from multiple locations.

Ø Run a long running process without maintaining an active shell.

Ø Similar applications:

o tmux

o byobu

o …

Screen

Ø $ screen start a new "screen”

Ø $ screen -S screen1 start a "screen" named screen1

Ø $ screen -ls overview of (in)active screens

Ø $ screen -r reattach after detach or connection drop

Ø $ screen -x attach to a non-detached screen session (multi display mode)

Ø Key combinations:

o Ctrl + a, d detach
o Ctrl + a, c open a new window
o Ctrl + a, n goto next window
o Ctrl + a, p goto previous window

Ø Do not forget the host on which you launched the screen command ;-)

rsync

Ø Efficient transfer and synchronization of files and directories over network

Ø Like scp or rcp, but more options

Ø Typical usage: copy from source to destination, useful for backups/large transfers

$ rsync [options] <source> <destination>

Ø source or destination may be remote (but not both)

Ø Some notable options (combine with an alias to avoid retyping):

o -a archive mode; keeps links, permissions, … (implies -r)
o -r recurse into directories
o -v verbose mode
o -z compress data during transfer
o -H preserve hard links
o --progress show transfer progress

rsync: files

$ rsync file user@server copies file locally (!)

$ rsync file user@server: copies file to ~ on server (mind the :)

$ rsync file user@server:file2 copies file to ~ on server, renamed file2

$ rsync file user@server:test/ copies file to ~/test on server (mind the /)

remote dir ~/test/ created if non-existant

$ rsync file user@server:/home/user/ copies file to /home/user/ on server

$ rsync user@server:file ~ copies remote file to local ~

$ rsync user@server:dir/file ~ copies remote ~/dir/file to local ~

rsync: directories
$ rsync user@server:dir ~ skips directory, so does nothing
$ rsync user@server:dir/ ~ skips directory, so also does nothing

$ rsync -r user@server:dir ~ copy remote dir to local home dir (creates ~/dir)

$ rsync -r user@server:dir/ ~ copies content of remote dir to local home dir ~

$ rsync -r dir user@server: copy local dir to remote home dir
(creates remote ~/dir if non-existant)

$ rsync -r dir user@server:dir2 copies local dir to remote dir2
(result: user@server:dir2/dir)

$ rsync -r dir/ user@server:dir2 copies content of local dir to remote dir2
(result: user@server:dir2/)

$ rsync -r user@server:dir dir2 copies remote dir to local dir2 (result: dir2/dir)
$ rsync -r user@server:dir/ dir2 copies content of remote dir to local dir2

(result: dir2/dir)

mlr (Miller)

Ø Textual data processing

o Query, shape or reformat CSV, TSV, JSON, … data files

o Compact verbs instead of programming language

o Typical usage: process data files, pretty-print data, format conversion

mlr [flags] {verb} [verb-dependent options ...] {zero or more file names}

o https://miller.readthedocs.io/

o https://miller.readthedocs.io/en/latest/10min

https://miller.readthedocs.io/
https://miller.readthedocs.io/en/latest/10min

mlr (Miller)

$ mlr --csv cat example.csv print contents of example.csv

$ mlr –-icsv --ojson cat example.csv convert example.csv to JSON format

$ mlr --c2j cat example.csv convert example.csv to JSON (keystroke-saver flag)

$ mlr --icsv --opprint cat example.csv pretty-print example.csv

$ mlr --csv tail –n 4 example.csv print header and last 4 lines of example.csv

$ mlr --c2p cut -f user,jobid example.csv

pretty-print only fields user and jobid

$ mlr --tsv -N --oxtab filter '$1 == "Fedora"' then cut -f 2,3 then sort -n 2

distrostab.txt filter on Fedora, show only version and date

awk

Ø Textual data processing

o Processing of a stream of text (standard input or set of files)

o Typical usage: list patterns and desired actions for that pattern

awk 'pattern1 { action1 } pattern2 { action2 } …' files

§ By default, each line of a file is a “record”

• Several “fields” per record, separated by whitespace

§ awk loops over all records, for each record:

• evaluates each pattern
• if pattern is true (non-zero result): execute associated action

o Powerful, but can become as complicated as you want

o https://www.gnu.org/software/gawk/manual/

https://www.gnu.org/software/gawk/manual/

awk: patterns

Ø Pattern elements

o BEGIN beginning of file
o END end of file
o 1 always
o 0 never
o <empty> always
o https://www.gnu.org/software/gawk/manual/html_node/Pattern-Overview.html

Ø Expressions

o <value1> == <value2> comparison (similar for !=,<,>,<=,>=)
o <value> ~ /<regex>/ value matches with regex (similarly !~ for absence of match)
o Logical expressions like Bash tests: AND (&&), OR (||) and NOT (!)
o https://www.gnu.org/software/gawk/manual/html_node/Expressions.html

https://www.gnu.org/software/gawk/manual/html_node/Pattern-Overview.html
https://www.gnu.org/software/gawk/manual/html_node/Expressions.html

awk: actions

Ø Grouped between braces {}

Ø Some building blocks:

o $n value of n-th field in current record
o print prints to stdout
o printf prints to stdout with extra formatting options
o next stops further processing of current record and continues with next record
o +, -, *, /, %, **, ++, -- arithmetic and increment operations
o <var> = …, <var> += …, <var> -= … variable assignment

Ø Separate action statements are separated by semicolon (;) or line-break

Ø https://www.gnu.org/software/gawk/manual/html_node/Statements.html

Ø https://www.gnu.org/software/gawk/manual/html_node/Action-Overview.html

https://www.gnu.org/software/gawk/manual/html_node/Statements.html
https://www.gnu.org/software/gawk/manual/html_node/Action-Overview.html

awk: examples

Ø Print every record/line of the file (both are equivalent):

$ awk '1 {print}' squeue.txt

$ awk ' {print}' squeue.txt

Ø Print only jobs where 5th field (STATE) in each record equals “Running”:

$ awk '$5 == "R" {print}' squeue.txt

Ø Print 4th field (USER):

$ awk '$5 == "R" {print $4}' squeue.txt

awk: variables

Ø Similar to Bash variables

o Built-in

§ FS field separator (whitespace by default)
§ OFS output field separator
§ RS record separator (whitespace by default)
§ ORS output record separator
§ NR number of records processed (total number of records in END block)
§ NF number of fields in a record
§ Can be overwritten (in any action)

o User-defined

§ Assigned in action (<var> = <value>)
§ Scalar: numeric (1234, 6.02e+23), string ("abc"), regex (/<regex>/), …
§ “Associative” arrays: fib[8] = 21, g["earth"] = 9.81

awk: examples

Ø Print lines 5-19:

$ awk '5 <= NR && NR < 20 {print}' squeue.txt

Ø Keep number of running jobs for user id076 :

$ awk '$5 == "R" && $4 == "id076" {nrj +=1}
END {print nrj}' squeue.txt

Ø Keep number of running jobs per user, but print only for id076:

$ awk '$3 == "R" {nrj[$4]+=1}
END {print nrj["id076"] }' squeue.txt

Ø Keep number of running jobs per user, and print for all users:

$ awk '$3 == "R" {nrj[$4]+=1}
END { for (u in nrj) print u, nrj[u] }' squeue.txt

awk: built-in functions and utilities

Ø GNU awk has several built-in functions, ranging from sin, cos, tan to internationalization:

o https://www.gnu.org/software/gawk/manual/html_node/Built_002din.html

Ø GNU awk also contains several other built-in POSIX utility clones:

o These are not identical clones of the POSIX utilities, but similar in use.

o https://www.gnu.org/software/gawk/manual/html_node/Clones.html

§ cut

§ egrep

§ id

§ sort

§ split

§ tee

§ uniq

§ wc

https://www.gnu.org/software/gawk/manual/html_node/Built_002din.html
https://www.gnu.org/software/gawk/manual/html_node/Clones.html

awk: built-in utilities examples

Ø Calls to these utilities must be surrounded by double quotes.

Ø Example: get the number of running jobs per user, in sorted order

$ awk '$3 == "R" {nrj[$4]+=1}
BEGIN {print "UID" "#jobs"} print a header
END { for (uid in nrj) print uid, nrj[uid] | "sort" }' squeue.txt

Ø Example: get the number of running jobs for users, but print only for idx3y –form usernames

$ awk '$3 == "R" {nrj[$4]+=1}
BEGIN {print "UID" "#jobs"}
END { for (uid in nrj) print uid, nrj[uid] | "egrep ^id.3." }' squeue.txt

o Note: in this case egrep only filters the data from the for loop, so we still get the header.

o This program counts all running jobs, although it only displays the ones we want.
What should you modify to only count the number of running jobs for id.3. user IDs? How?

awk: output

Ø You can modify the output separators by setting the corresponding variables.

o E.g. if your data contains whitespaces, separate fields with commas or colons or vice versa.

Ø Example: get the running jobs and sum of number of nodes in use (7th field) per user,

separate output by colons

$ awk '$5 == "R" {nrj[$4]+=1; nrn[$7]+=$7}

BEGIN {OFS=":"; print "UID", "run", "nodes"}

END { for (uid in nrj) print uid, nrj[uid], nrn[uid] | "sort " }'

squeue.txt

awk: scripts

Ø Write long or frequently re-used awk programs in files and use them with awk -f.

Ø Example: get a comma-separated list of currently running jobs, per user

$ awk -f get_running.awk squeue.txt

$5 == "R" # get_running_jobs.awk
{
 if (length(jobs[$4]) == 0){ # if jobs still empty
 jobs[$4] = $1 # fill it with value of 1st field
 }else{
 jobs[$4] = (jobs[$4] "," $1) # join strings
 }
}
BEGIN {OFS=":"; print "UID", "running jobs"}
END { for (uid in jobs) print uid, jobs[uid] }

awk: scripts
Ø Even better: make the program self-contained

$ chmod +x get_running_exec.awk
$./get_running_exec.awk squeue.txt

#! /usr/bin/env -S awk -f # get_running_jobs_exec.awk

$5 == "R"
{
 if (length(jobs[$4]) == 0){ # if jobs still empty
 jobs[$4] = $1 # fill it with value of 1st field
 } else {
 jobs[$4] = (jobs[$4] "," $1) # join strings
 }
}
BEGIN {OFS=":"; print "UID", "running jobs"}
END { for (uid in jobs) print uid, jobs[uid] }

Feedback welcome:

Ø Please fill out this (short, anonymous) survey:

https://tiny.cc/calcua-linux-intro-survey

https://tiny.cc/calcua-linux-intro-survey

Links

Ø linuxcommand.org/tlcl.php

Ø free-electrons.com/doc/legacy/command-line/unix_linux_introduction.pdf

Ø www.ibm.com/developerworks/linux/

Ø www.howtogeek.com/tag/linux/

Ø Greg's Wiki Bash Guide: mywiki.wooledge.org/BashGuide

o Common mistakes: mywiki.wooledge.org/BashPitfalls

Ø www.tldp.org

o Advanced bash guide: www.tldp.org/LDP/abs/html/

Ø Cheat sheets: devhints.io

http://linuxcommand.org/tlcl.php
http://free-electrons.com/doc/legacy/command-line/unix_linux_introduction.pdf
http://www.ibm.com/developerworks/linux/
http://www.howtogeek.com/tag/linux/
https://mywiki.wooledge.org/BashGuide
https://mywiki.wooledge.org/BashPitfalls
http://www.tldp.org/
http://www.tldp.org/LDP/abs/html/
https://devhints.io/

More training

Ø hpc.uantwerpen.be

Ø www.vscentrum.be

Ø www.vscentrum.be/training

28/02/2022 15:16TRAINING & EVENTS | VSC

Pagina 1 van 5https://www.vscentrum.be/training

Training & Events

The VSC spends the necessary time on supporting and training researchers who make use of the infrastructure. It is important that

calculations can be executed e!ciently because this increases the scientific competitive position of the universities in the international

research landscape. The VSC also organizes events to give its users the opportunity to get in touch with one another to foster new

collaborations. The annual User Day is a prime example of such an event that also give the users the occasion to discuss and exchange

ideas with the VSC staff.

Training organized by the VSC is intended not only for researchers attached to Flemish universities and the respective associates, but

also for the researchers who work in the Strategic Research Centers, the Flemish scientific research institutes and the industry.

The training can be placed into four categories that indicate either the required background knowledge or the domain-specific subject

involved:

Introductory: general usage, no coding skills required

Intermediate

Advanced

Specialist courses & workshops

We have created a range of Online Training videos, accessible via our YouTube channel.

Training & Events

Search...

Home COVID19 HPC About VSC Training & Events Video Library User Portal Get in Touch Get Access

http://hpc.uantwerpen.be/
http://www.vscentrum.be/
https://www.vscentrum.be/training

