
vscentrum.be

HPC@UAntwerp introduction
Ine Arts, Franky Backeljauw, Stefan Becuwe, Kurt Lust, Carl Mensch,
Michele Pugno, Bert Tijskens, Robin Verschoren

Version Fall 2024

Table of contents – Part 1

1. Introduction to the VSC
• UAntwerp Tier-2 infrastructure

• VSC Tier-1 infrastructure

• Characteristics of a HPC cluster

2. Getting a VSC account
• SSH and public/private key pairs

• Required software

• Create your VSC account

3. Connect to the cluster
• Types of cluster nodes

• Connecting to the cluster using SSH

• Using an SSH configuration file

4. Transfer your files to the cluster
• File systems and user directories

• Block and file quota

• Transferring your files

• Globus data sharing platform

• Best practices for file storage

5. Select the software and
build your enviroment
• System, development and application software

• Toolchains & the CalcUA modules

• Searching, loading and unloading modules

• Best practices for using modules

6. Define and submit your jobs
• Running batch jobs

• Job submission workflow

• Job script example

• Important Slurm concepts

• Slurm resource requests

• Non-resource-related options

• The job environment

7. Slurm commands
• sbatch, srun, salloc, squeue, scancel

• sstat, sacct, sinfo, scontrol

Table of contents – Part 2

7. Slurm commands
• sbatch : submit a batch script

• squeue : check the status of your jobs

• scancel : cancel a job

• sinfo : get an overview of the cluster and partitions

• sstat and sacct : information about jobs

• scontrol : view Slurm configuration and state

• srun : run parallel tasks

• salloc : create a resource allocation

• sstat and sacct : information about jobs

8. Multi-core parallel jobs
• Why parallel computing?

• Running a shared memory job

• Running a MPI job

• Running a hybrid MPI job

• Job monitoring

9. Organizing job workflows
• Examples of job workflows

• Passing (environment) variables in job scripts

• Passing command line arguments to job scripts

• Dependent jobs

10. Multi-job submission
• Running a large batch of small jobs

• Jobs arrays and atools

11. Extra topics
• Running an interactive job

• Using the visualisation node

• Using (Apptainer) containers

12. Final notes

vscentrum.be

HPC@UAntwerp introduction
1 — Introduction to the VSC

CalcUA and VSC

➢ HPC core facility CalcUA

o provides HPC infrastructure & software for researchers

o offer training & support

o UAntwerp Tier-2 infrastructure (local)

➢ Vlaams Supercomputer Centrum (VSC)

o partnership between 5 University associations: Antwerp, Brussels, Ghent, Hasselt, Leuven

o FWO funded (Research Fund – Flanders)

o goal: make HPC available to all researchers in Flanders – academic and industrial

o provides central Tier-1 infrastructure

o other local Tier-2 infrastructures: VUB, UGent and KU Leuven / UHasselt

https://hpc.uantwerpen.be/
https://vscentrum.be/
https://www.facebook.com/vschpc

The European HPC landscape

Tier-0
Europe

Tier-1
regional/
national

Tier-2
university

Tier-3
desktop

UAntwerp Tier-2 infrastructure

UAntwerp Tier-2 Infrastructure

Storage system
shared, 730 TB

2 Login nodes

152 compute nodes
• AMD Zen2
• 2x 32 cores

40 compute nodes
• AMD Zen3
• 2x 32 cores

1 GPU node
• 4x Nvidia A100

2 GPU nodes
• 2x AMD Arcturus

Vaughan

2 Login nodes

152 compute nodes
• Intel Broadwell
• 2x 14 cores

2 GPU nodes
• 2x Nvidia P100

Vector engine node
Visualization node

Leibniz

Login node

23 compute nodes
• Intel Skylake
• 2x 14 cores

Breniac

https://docs.vscentrum.be/antwerp/tier2_hardware.html

UAntwerp Tier-2 infrastructure

VSC Tier-1 infrastructure

VSC Tier-1 Infrastructure

2 Login nodes 384 compute nodes
• AMD Milan
• 2x 64 cores

20 GPU nodes
• 4x Nvidia A100

384 compute nodes
• AMD Rome
• 2x 64 cores

20 GPU nodes
• 4x Nvidia A100

Hortense (UGent)

Storage system
shared, 5.4 PB

PHASE 2

https://docs.vscentrum.be/hardware-tier1.html

VSC Tier-1 infrastructure

Hortense (UGent)

Characteristics of a HPC cluster

➢ Shared infrastructure, used by multiple users simultaneously

o you need to request the appropriate resources

o you may have to wait a while before your computation starts

➢ Expensive infrastructure

o software efficiency matters!

➢ Built for parallel jobs

o no parallelism = no supercomputing

o not meant for running a single single-core job

➢ Remote computation model

o for batch computations rather than interactive applications

➢ Linux-based systems

o no Windows or macOS software

vscentrum.be

HPC@UAntwerp introduction
2 — Get a VSC account

SSH and public/private key pairs

➢ Communication with the cluster happens through SSH (Secure SHell)

o Protocol to log in to a remote computer, transfer files (SFTP), …

o uses public/private key pairs

Keep safe!

Upload to VSC
account page

/home/<username>/.ssh/id_rsa.pub

public key

/home/<username>/.ssh/id_rsa

private key

• passphrase
• don’t share

Required software

➢ Windows

o SSH client included in latest versions of Windows 10 or above

▪ check if present in Windows Settings > System > Optional features

o advice: install and use Windows Terminal (available via the Microsoft Store)

▪ choose between Command Prompt, PowerShell, and bash (via WSL)

o alternative: use Windows Subsystem for Linux (WSL)

▪ install and use a Linux distribution of your choice

o MobaXterm combines a SSH/SFTP client, X server and VNC server in one

o PuTTY used to be a popular GUI SSH client

https://learn.microsoft.com/en-us/windows/terminal/
https://docs.microsoft.com/en-us/windows/wsl/install-win10
https://mobaxterm.mobatek.net/
https://www.putty.org/

Required software

➢ macOS

o SSH client included

o Terminal (built-in) or iTerm2

o XQuartz (for graphical applications)

o optional: Homebrew (to install Linux commands)

➢ Linux

➢ SSH client included

➢ choice of terminal and shell

https://www.iterm2.com/
https://www.xquartz.org/
https://brew.sh/

Create your VSC account

Create a public/private key pair

o create RSA key pair (at least 4096 bits)

$ ssh-keygen –t rsa –b 4096

o note: on Windows, when using PuTTYgen key generator

▪ use PuTTY key format 2 in latest version

▪ Convert the public key to OpenSSH format

Upload public key → VSC account page

o web-based registration procedure

➢ your VSC username is vsc2xxxx

$ ssh-keygen –t rsa –b 4096

https://docs.vscentrum.be/access/generating_keys.html
https://docs.vscentrum.be/access/generating_keys.html
https://account.vscentrum.be/

vscentrum.be

HPC@UAntwerp introduction
3 — Connect to the cluster

A typical workflow

1
9

1. Connect to the cluster
2. Transfer your files to the cluster
3. Select the software and build your environment
4. Define and submit your job
5. Wait while

➢ your job gets scheduled
➢ your job gets executed
➢ your job finishes

6. Move your results

Types of cluster nodes

➢ Computer cluster consists of nodes

o each node has specific task(s)

➢ Login nodes

o access to cluster

o edit & submit jobs

o small compilations

➢ Compute nodes

o actual computations

Login section

Admin section

Compute section

Storage section

Connecting to the cluster – Using SSH

➢ You need:

o VSC account name: vsc2xxxx

o Hostname of a login node

o Private key (public key
already uploaded)

➢ Restricted public access

o outside of Belgium: use VPN

▪ vpn.uantwerpen.be

▪ Instructions on Pintra
My Subsites > Department ICT
> ICT Guide > Remote working - VPN

Cluster Hostname of login node

Vaughan login-vaughan.hpc.uantwerpen.be

Vaughan
(indiv. login nodes)

login1-vaughan.hpc.uantwerpen.be
login2-vaughan.hpc.uantwerpen.be

Leibniz login-leibniz.hpc.uantwerpen.be
login.hpc.uantwerpen.be

Leibniz
(indiv. login nodes)

login1-leibniz.hpc.uantwerpen.be
login2-leibniz.hpc.uantwerpen.be

Leibniz (vis. node) viz1-leibniz.hpc.uantwerpen.be

Breniac login-breniac.hpc.uantwerpen.be

https://vpn.uantwerpen.be/

Connecting to the cluster – Using SSH

➢ Login via secure shell

o if your private key has the standard filename (~/.ssh/id_rsa)

 $ ssh vsc2xxxx@login.hpc.uantwerpen.be

o otherwise, explicitly specify the filename

 $ ssh –i ~/.ssh/id_rsa_vsc vsc2xxxx@login.hpc.uantwerpen.be

Text-mode access using OpenSSH

$ ssh vsc2xxxx@login.hpc.uantwerpen.be

$ ssh –i ~/.ssh/id_rsa_vsc vsc2xxxx@login.hpc.uantwerpen.be

mailto:vsc2xxxx@login.hpc.uantwerpen.be
https://docs.vscentrum.be/access/text_mode_access_using_openssh.html

Using an SSH configuration file

➢ for all hosts

o (try to) keep the connection alive

➢ when connecting as user vsc2xxxx

o use this private key

➢ create a shorthand “calcua”

o connect as user vsc2xxxx

o use login node login.hpc.uantwerpen.be

o use agent forwarding (for subsequent ssh calls (-A))

o use X11 forwarding (for visualisation (-X))

Host *
 ServerAliveInterval 60

Match final User vsc2xxxx
 IdentityFile ~/.ssh/id_rsa_vsc

Host calcua

 User vsc2xxxx
 HostName login.hpc.uantwerpen.be

 ForwardAgent yes
 ForwardX11 yes

➢ Put this file in ~/.ssh/config and then you can connect using: ssh calcua

SSH config

https://docs.vscentrum.be/access/ssh_config.html

Hands-on

➢ Install the required software

➢ Create your VSC account

o create a public/private key pair

o upload your public key

➢ Login to a CalcUA cluster via ssh

➢ Create a SSH configuration file

o feel free to choose your own shorthand name

o login using the shorthand name

vscentrum.be

HPC@UAntwerp introduction
4 — Transfer your files to the cluster

A typical workflow

2
6

1. Connect to the cluster
2. Transfer your files to the cluster
3. Select the software and build your environment
4. Define and submit your job
5. Wait while

➢ your job gets scheduled
➢ your job gets executed
➢ your job finishes

6. Move your results

File systems and user directories

➢ /scratch/antwerpen/2xx/vsc2xxyy

o fast but temporary storage

o highest performance – for large files

o local only, no backup

➢ /data/antwerpen/2xx/vsc2xxyy

o long-term storage

o slower – for small files

o exported to other VSC sites

➢ /user/antwerpen/2xx/vsc2xxyy

o only for account configuration files

o exported to other VSC sites

$VSC_HOME

$VSC_SCRATCH

$VSC_DATA

Block and file quota

➢ Block quota: limits the size of data

➢ File quota: limits the number of files

➢ Default values (but you can request more)

o Show quota: at login or myquota command

➢ Note: on /scratch, the number of files corresponds to number of data chunk files

o 1 end-user created file can be spread over at most 8 data chunk files

o does not include the number of directories

File system Block quota File quota

/scratch 50 GB 100 k

/data 25 GB 100 k

/home 3 GB 20 k

Transferring your files

➢ For simple file tranfers: secure copy (SCP)

o copy from your local computer to the cluster

$ scp file.ext vsc2xxxx@login.hpc.uantwerpen.be:

o copy from the cluster to your local computer

$ scp vsc2xxxx@login.hpc.uantwerpen.be:file.ext .

➢ Need more features (e.g.: file browsing, resuming transfers, …): use SFTP

o command-line: sftp

o graphical ssh/sftp file managers for

▪ Windows: PuTTY, WinSCP, MobaXterm

▪ macOS: CyberDuck

▪ multiplatform: FileZilla (also supports server-to-server transfers (FXP))

Data transfer on external computers

$ scp file.ext vsc2xxxx@login.hpc.uantwerpen.be:

$ scp vsc2xxxx@login.hpc.uantwerpen.be:file.ext .

mailto:https://www.chiark.greenend.org.uk/~sgtatham/putty/
mailto:https://winscp.net/
https://mobaxterm.mobatek.net/
mailto:https://cyberduck.io/
mailto:https://filezilla-project.org/
https://docs.vscentrum.be/data/transfer/external_computer.html

Globus data sharing platform

Globus web app

o web service to transfer large amounts of data between local computers and/or remote servers

o offers data sharing features (guest collections), connectors (for OneDrive), CLI interface

➢ HPC@UAntwerp collection: VSC UAntwerpen Tier2

o login with UAntwerp or VSC account – note: active VSC account needed

o access to /data and /scratch

➢ Transfer between: local computer (laptop/desktop) ←→ remote server

o required software: Globus Connect Personal

o transfers will be resumed automatically

➢ Direct transfer: remote server ←→ remote server

o initiated from your local computer (no software needed)

Globus data sharing platform

https://app.globus.org/
https://docs.vscentrum.be/globus/index.html

Best practices for file storage

➢ The cluster is not for long-term file storage

o move back your results to your laptop or server in your department

o backup exist for the /user and /data – not for very volatile data

o old data on /scratch can be deleted if scratch fills up

➢ Cluster is optimised for parallel access to large files

o not for tons of small files (e.g., one per MPI process)

➢ Request more quota on /scratch

o block quota – without too much motivation

o file quota – you will have to motivate why you need more files

➢ Note: text files are good for summary output, or data for a spreadsheet,
but not for storing 1000x1000-matrices — use binary files for that!

Hands-on

➢ Copy some files between your laptop and CalcUA

o feel free to use either command-line tools (scp/sftp) or a graphical client

o check on which clusters these files are available

➢ Copy the files back using the Globus web app

o download and install Globus Connect Personal

o good practice: configure it to use a dedicate subdirectory of your choice

o initiate the transfer back to your laptop

▪ look at the options

vscentrum.be

HPC@UAntwerp introduction
5 — Select the software and
5 — build your environment

A typical workflow

3
4

1. Connect to the cluster
2. Transfer your files to the cluster
3. Select the software and build your environment
4. Define and submit your job
5. Wait while

➢ your job gets scheduled
➢ your job gets executed
➢ your job finishes

6. Move your results

System software

➢ Operating system: Rocky Linux – currently, version 8.10

o Red Hat Enterprise Linux (RHEL) 8 clone

o Installed on all CalcUA clusters: Vaughan, Leibniz and Breniac

▪ All clusters are kept in sync as much as possible

➢ Resource management and job scheduler: Slurm

➢ Software build and installation framework: EasyBuild

➢ Environment modules system: Lmod

https://rockylinux.org/
https://slurm.schedmd.com/
https://easybuild.io/
https://lmod.readthedocs.io/

Development software

➢ C/C++/Fortran compilers

o Intel oneAPI and GCC

o with OpenMP support

➢ Message passing libraries

o Intel MPI, Open MPI

➢ Mathematical libraries

o Intel MKL, OpenBLAS, FFTW, MUMPS, GSL, …

➢ File formats and data partitioning

o HDF5, NetCDF, Metis, ...

➢ Scripting and programming languages

o Python, Perl, …

Application software

➢ Quantum Chemistry / Computational Chemistry / Electronic Structure Calculations

o ABINIT, CP2K, QuantumESPRESSO, VASP, Gaussian, ORCA, NWChem, OpenMX, Siesta

➢ Molecular Dynamics (MD) and Biomolecular Simulation

o GROMACS, NAMD, AMBER, LAMMPS, CHARMM, Desmond, Tinker, DL_POLY

➢ Multiphysics Simulation / Finite Element Analysis (FEA) – COMSOL, ANSYS, ABAQUS, OpenFOAM

➢ Computational Fluid Dynamics (CFD) – Fluent (ANSYS), STAR-CCM+, TELEMAC

➢ Optimization and Operations Research – Gurobi, CPLEX

➢ Bioinformatics / Computational Biology – BLAST, Bowtie, Guppy, HMMER, MAFFT

➢ Pharmacokinetics / Pharmacodynamics Modeling – MonolixSuite

➢ Data Analysis / Statistical Computing / Scientific Computing – MATLAB, R, Python (SciPy/NumPy), Julia

➢ Machine Learning / AI / Deep Learning Frameworks – TensorFlow, PyTorch, Scikit-learn, …

Using licensed software

➢ VSC or campus-wide license

o e.g.: MATLAB, Mathematica, Maple, MonolixSuite, …

o restrictions may apply if you don’t work at UAntwerp

▪ institutions that have access (ITG, VITO)

▪ companies

➢ Other restricted licenses

o e.g.: VASP, Gaussian, …

▪ typically paid for by research groups (or individual users)

▪ sometimes just other license restrictions that must be respected

o access controlled via group membership

▪ talk to the owner of the license first

▪ request group membership via the VSC account page (“New/Join group”)

▪ the group moderator will grant or refuse access

https://account.vscentrum.be/

Software installation and support

➢ Installed in /apps/antwerpen

o preferably built and installed using EasyBuild

o often multiple versions of the same package

➢ Additional software – installed on demand

o system requirements should be met (e.g., no Windows software)

o provide building instructions (no rpm/deb packages)

▪ is the software supported by EasyBuild?

o commercial software must have a cluster-use license

o assist in testing – we can't have expertise in all domains

➢ Limited (compilation) support

o best effort, no code fixing

o many packages are tested with only one compiler

https://docs.easybuild.io/version-specific/supported-software/

Selecting software

➢ Using modules

o dynamic software management

o no version conflicts

o automatically loads required dependencies

o sets environment variables

▪ generic – $PATH, $LD_LIBRARY_PATH, ...

▪ application-specific – $PYTHONPATH, …

▪ EasyBuild related – $EBROOT…

➢ Module naming scheme

 <name of software>/<version>[-<toolchain info>][-<additional info>]

▪ toolchain = bundle of compiler + compatible MPI and math libraries

▪ additional information: used to distinguish between versions

<name of software>/<version>[-<toolchain info>][-<additional info>]

Toolchains

➢ Toolchain = bundle of compiler + compatible MPI and math libraries

o intel – Intel & GNU compilers, Intel MPI and MKL libraries

o foss – GNU compilers, Open MPI, OpenBLAS, FFTW, ...

➢ Subtoolchains — not including MPI or mathematical libraries

o gfbf = GCC + FlexiBLAS + FFTW

o GCC = GCCcore + binutils

o GCCcore — GNU compilers only

➢ System toolchain – system compilers (installed as part of the OS)

➢ Refreshed yearly (actually, twice per year) → 2024a, 2023b, 2023a, 2022b, 2022a, …

o offers more recent versions of the components (and of the software built with it)

Overview of common toolchains (and their component versions)

https://docs.easybuild.io/common-toolchains/

CalcUA modules

➢ Used to group software installed in the same time frame

➢ Currently available versions of the toolchain compiler modules

▪ 2024a, 2023a, 2022a, 2021a : mostly foss, but also intel

▪ 2020a : intel only

➢ Good practice: always load a calcua module first!

CalcUA module Software collection

calcua/2024a version 2024a of the toolchain compiler modules
+ software built with them

calcua/system software built with system compilers

calcua/x86_64 software installed from binaries (x86_64)

calcua/all all currently available software (all of the above)

$ module av openfoam Show/search available modules
• depends on currently loaded calcua module
• case-insensitive

$ module spider openfoam Show/search installed modules
• also includes extensions (e.g., Python packages, …)

$ module spider
 openfoam/11-foss-2023a

Display additional information about a specific module
• shows which calcua modules provide it

$ module load
 OpenFOAM/11-foss-2023a

Load a specific version of a module
• advise: explicitly specify name & version
• case-sensitive

$ module list List all loaded modules (in the current session)

Using modules

➢ One command for searching, loading and unloading modules: module

$ module purge Unload all modules – start from a clean environment
• removal of a sticky module using --force

$ module load calcua/2023a Load appropriate calcua module first
• makes the modules available (from 2023a)

$ module load
 OpenFOAM/11-foss-2023a

Load a specific version of a module
• advise: explicitly specify name & version

Using modules – best practices

➢ Advise: do not load modules in your .bashrc

o consider using module collections instead – subcommands: save, savelist, describe, restore

Software stack (and using the module command)

User’s Tour of the Module Command

https://lmod.readthedocs.io/en/latest/010_user.html
https://docs.vscentrum.be/software/software_stack.html
https://lmod.readthedocs.io/en/latest/010_user.html

Hands-on

➢ Which software are you going to use?

o can you find which versions we have?

o if we do not have it, is it supported by EasyBuild?

▪ yes → let us know

▪ no → look for instructions & let us know

➢ Use our advice to load the modules

o start from a clean environment

o load an appropriate calcua module

o load the module you want to use

➢ Try out saving and restoring a module collection

vscentrum.be

HPC@UAntwerp introduction
6 — Define and submit your job

A typical workflow

4
8

1. Connect to the cluster
2. Transfer your files to the clusters
3. Select the software and build your environment
4. Define and submit your job
5. Wait while

➢ your job gets scheduled
➢ your job gets executed
➢ your job finishes

6. Move your results

Running batch jobs

➢ Running computations → batch jobs

o script with resource specifications

➢ Submitted to a queueing system

o managed by a resource manager

➢ Next job selected by a scheduler

o in a fair way – fairshare

o based on available resources

& scheduling policies

➢ Remember:

o a cluster is a shared infrastructure

o jobs might not start immediately

Connected here

Want to compute
here (run jobs)

Other users will
also have jobs
running here

Job queue

SLURM
scheduler

Job submission workflow – Behind the scenes

#!/bin/bash
#SBATCH -o stdout.%j
#SBATCH -e stderr.%j
module purge
module load calcua/all
module load MATLAB

matlab -r fibo

Submit jobs
Query the cluster

Scheduler plugin

Resource
manager (server)

Partition
manager

Scheduling policy

Resource
manager
(client)

Resource
manager
(client)

Resource
manager
(client)

Resource
manager
(client)Users

Job script

Job script example

➢ Start with shebang line

➢ Request resources + give instructions

▪ first block

▪ start with #SBATCH
• these look like comments to bash

➢ Load relevant modules

o build a suitable job environment

➢ Actual computation commands

#!/bin/bash

#SBATCH --ntasks=1 --cpus-per-task=7
#SBATCH --mem-per-cpu=1g
#SBATCH --time=1:00:00
#SBATCH -A ap_proj
#SBATCH -o stdout.%j
#SBATCH -e stderr.%j

module purge
module load calcua/all
module load MATLAB/R2022a

matlab -r fibo

Important Slurm concepts

Node Compute node

Core Physical core (in physical cpu)

CPU Virtual core – hardware thread
• on the CalcUA clusters, hyperthreading is disabled → CPU = Core

Partition Group of nodes with job limits and access controls – aka job queue

Job Submitted job script — resource allocation request

Job step Set of (possibly parallel) tasks within a job
• the job script itself is a special step – the batch job step
• e.g., a MPI application typically runs in its own job step

Task Corresponds to a (single) Linux process, executed in a job step
• a single task can not use more CPUs than available in a single node
• e.g., for a MPI application, each rank (MPI process) is a task

but a shared memory program is a single task

Slurm resource requests – Overview

Long option Short option Description

--ntasks=<number> -n <number> Number of tasks

--cpus-per-task=<ncpus> -c <ncpus> Number of CPUs per task

--mem-per-cpu=<amount><unit> Amount of memory per CPU

--time=<time> -t <time> Time limit (wall time)

--account=<ap_proj> -A <ap_proj> Project account to use

--partition=<pname> -p <pname> Partition to submit to

--switches=<count> Max count of leaf switches

--job-name=<jobname> -J <jobname> Name of the job

--output=<outfile> -o <outfile> Redirect stdout

--error=<errfile> -e <errfile> Redirect stderr

--mail-type=<type> Event notification (start, end, …)

--mail-user=<email> Email address

Slurm resource requests – Project account

➢ Required to specify a project account at CalcUA clusters

o accounting for both compute (jobs) and storage (files)

o ask your supervisor / project account manager to get access

o Use appropriate account according to project

➢ Show accounts you have access to: myprojectaccounts

o all project accounts start with ap_

o during courses → ap_course_hpc_intro

Accounting @ CalcUA (slides & video)

Long option Short option Job environment variable Description

--account=<ap_proj> -A <ap_proj> SLURM_JOB_ACCOUNT Project account to use

https://www.uantwerpen.be/en/research-facilities/calcua/support/accounting/

Slurm resource requests – Tasks & CPUs per task

➢ Specify number of (parallel) tasks and CPUs (cores) per task

o Task = single process (runs within a single node)

o CPUs per task → number of computational threads for a task

➢ Note: CPUs per task can never exceed the number of cores per node

➢ If not set, default = 1 task & 1 CPU

Long option Short option Job environment variable Description

--ntasks=<number> -n <number> SLURM_NTASKS (if set) Number of tasks

--cpus-per-task=<ncpus> -c <ncpus> SLURM_CPUS_PER_TASK (if set) Number of CPUs per task

Slurm resource requests – Memory per CPU

➢ Memory per CPU – not per task

o unit = kilobytes (k), megabytes (m) or gigabytes (g)

o amount = integer — 3.75g is invalid, use 3840m instead

➢ If not set, default = maximum available memory per requested CPU

o depends on node or partition setting

➢ Note: if requesting more than maximum available per CPU → number of CPUs will be increased

➢ Note: on CalcUA clusters, per node 16 GB is reserved for the OS and file system buffers
o e.g., on a Vaughan compute node with 256 GB of (installed) memory, the default value is 3840m

– calculated from (256 GB - 16 GB) / 64 CPUs = 240 / 64 = 3.75GB = 3840 MB (per core)

Long option Job environment variable Description

--mem-per-cpu=<amount><unit> SLURM_MEM_PER_CPU (in megabytes) Amount of memory per CPU

Slurm resource requests – Wall time

➢ Formats : mm | mm:ss | hh:mm:ss | d-hh | d-hh:mm | d-hh:mm:ss

o d = days, hh = hours, mm = minutes, ss = seconds

➢ Maximum time limit on the CalcUA clusters

o compute nodes: 3 days (Vaughan, Leibniz), 7 days (Breniac)

o GPU nodes: 1 day

➢ Wall time exceeded → job will be killed

➢ Wall time > maximum → job will not start

➢ If not set, default = 1 hour

Long option Short option Job environment variable Description

--time=<time> -t <time> SLURM_JOB_START_TIME
SLURM_JOB_END_TIME

Time limit = wall time

Slurm resource requests – Partitions

➢ Partition = group of nodes

o access controls and scheduling policies — e.g.: restrict access to a limited group of users

o job defaults & resource limits – e.g.: def/max mem per CPU, max time limit, def CPUS per GPU

➢ If not set, use the default partition defined per cluster

o note: job does not get automatically assigned to the optimal partition

UAntwerp Tier-2 Infrastructure – available partitions per cluster + resource limits

Long option Short option Job environment variable Description

--partition=<pname> -p <pname> SLURM_JOB_PARTITION Partition to submit to

https://docs.vscentrum.be/antwerp/tier2_hardware.html

CalcUA clusters – Partitions and node information

Cluster Partition # Specifications CPU – GPU Mem per CPU Max WT

Vaughan zen2

zen3

zen3_512

152

28

12

AMD Zen 2, 256 GB RAM

AMD Zen 3, 256 GB RAM

AMD Zen 3, 512 GB RAM

64 CPU

64 CPU

64 CPU

3.75 GiB – 3840m

3.75 GiB – 3840m

7.75 GiB – 7936m

3 days

ampere_gpu

arcturus_gpu

1

2

Zen 2, NVIDIA Ampere GPUs

Zen 2, AMD Arcturus GPUs

4 GPU – 64 CPU

2 GPU – 64 CPU

3.75 GiB – 3840m

3.75 GiB – 3840m

1 day

Leibniz broadwell

broadwell_256

144

8

Intel Broadwell, 128 GB RAM

Intel Broadwell, 256 GB RAM

28 CPU

28 CPU

4 GiB – 4096m

8,5 GiB – 8704m

3 days

pascal_gpu 2 Broadwell, NVIDIA Pascal GPUs 2 GPU – 28 CPU 4 GiB – 4096m 1 day

Breniac skylake 23 Intel Skylake, 192 GB RAM 28 CPU 6.29 GiB – 6436m 7 days

➢ bold = default partition for the corresponding cluster

Hands-on

➢ And now it’s time to run your first job – finally!

➢ Create a small job script which

▪ uses the correct project account

▪ needs 1 core and has a wall time of 10 minutes

▪ will run on the zen2 partition

▪ loads the module Python/3.12.3-GCCcore-13.3.0 – according to our advice

▪ estimates pi by using the command python pi.py

➢ Submit your first job

o submit the job – use sbatch → you get a job id

o be patient, the job will start soon – check the job status using squeue

o look at what happens – e.g.: which file are generated?

Slurm resource requests – Faster communication

➢ Node communication through network switches

o Nodes are grouped on edge switches which are connected by top switches

▪ hence communication/traffic between two nodes passes through either 1 or 3 switches

➢ Some programs are latency-sensitive – e.g.: GROMACS

o will run much better on nodes which are all connected to a single (edge) switch

➢ Note: using this option might increase your waiting time

Long option Description

--switches=1 Request all nodes to be connected to a single switch

Slurm resource requests – Exclusive node access

➢ Nodes are shared resources

o if you don’t request all cores, remaining cores might be used by another user

o if you submit multiple jobs, those might end up on the same or on different nodes

➢ Sometimes better to request exclusive access to the compute nodes

o e.g.: jobs influence each other (L3 cache, memory bandwidth, communication channels, ….)

o prevents sharing of allocated nodes with other jobs – even from the same user

➢ Be aware, you will be charged for a full node

Long option Description

--exclusive Request exclusive access to the node for the job

Slurm resource requests – Number of nodes

➢ For each task, all of the CPUs for that task are allocated on a single compute node

o different (parallel) tasks, might end up on either the same or different compute nodes

o depends on what is already running on these nodes — from you or another user

➢ Advise: bundle tasks from the same job on as few nodes as possible

o to make the communication latency between tasks as small as possible

➢ Specify the number of nodes the job may use / will get allocated

o Note: also possible to specify a min/max number of nodes using --nodes=<min>-<max>

Long option Short option Job environment variable Description

--nodes=<number> -N <number> SLURM_JOB_NUM_NODES Number of nodes

Non-resource-related options – Job name

➢ Assign a name to your job – the job name

o job name can be used when defining the output and error files

➢ If not given, the default name = name of the batch job script

o or “sbatch” if read from standard input

Long option Short option Job environment variable Description

--job-name=<jobname> -J <jobname> SLURM_JOB_NAME Name of the job

Non-resource-related options – Redirect stdout / stderr

➢ By default = redirect both stdout and stderr → slurm-<jobid>.out

o that file is present as soon as the job starts and produces output

➢ If only --output is given → redirect both stdout and stderr to the same file

➢ Possible to use filename patterns to define the filename

o examples: %x for the job name, %j for job id, …

Filename patterns

Long option Short option Description

--output=<outfile> -o <outfile> Redirect stdout

--error=<errfile> -e <errfile> Redirect stderr

https://slurm.schedmd.com/sbatch.html

Non-resource-related options – Mail notifications

➢ The scheduler can send you a mail when a job begins (starts), ends or fails (gets aborted)

o type = BEGIN | END | FAIL | ALL | TIME_LIMIT_xx

➢ default email address = linked to your VSC-account

Long option Description

--mail-type=<type> Event notification (start, end, …)

--mail-user=<email> Email address

The job runtime environment

➢ On UAntwerp clusters, we only set a minimal environment for jobs by default

o equivalent to exporting only these environment variables

--export=HOME,USER,TERM,PATH=/bin:/sbin

o hence you need to (re)build a suitable environment for your job – using modules

➢ Other available environment variables include

o VSC_* — for user directories, but also for cluster/os/architecture

o EB* + module specific variables – defined by loading modules

o SLURM_* variables – set by Slurm (next slide)

The job environment

--export=HOME,USER,TERM,PATH=/bin:/sbin

https://docs.vscentrum.be/jobs/job_submission.html

The job runtime environment

➢ Slurm defines several variables when a job is started

o these can be used when calling programs – e.g.: to pass the number of available CPUs

o some are only present if explicitly set

Output environment variables

Environment variable Explanation

SLURM_SUBMIT_DIR The directory from which sbatch was invoked

SLURM_JOB_ACCOUNT Account name selected for the job

SLURM_JOB_NUM_NODES Total number of nodes for the job

SLURM_JOB_NODELIST List of nodes allocated to the job

SLURM_JOB_CPUS_PER_NODE CPUs available to the job on this node

SLURM_TASKS_PER_NODE Number of tasks to run on this node

https://slurm.schedmd.com/sbatch.html

vscentrum.be

HPC@UAntwerp introduction
7 — Slurm commands

Slurm commands – Overview

Command Description

sbatch Submit a batch script

srun Run parallel tasks – start an interactive job

salloc Create a resource allocation

squeue Check the status of your jobs

scancel Cancel a job

sstat Information about running jobs

sacct Information about (terminated) jobs

sinfo Get an overview of the cluster, partitions and nodes

scontrol View current Slurm configuration and state

Slurm commands — sbatch
Submit a batch script

➢ sbatch <sbatch arguments> jobscript <arguments of the job script>

o does not wait for the job to start or end

o can also read the job script from stdin instead

➢ What sbatch does:

o submits the job script to the selected partition (aka job queue)

o returns Submitted batch job <jobid>

➢ What Slurm does – behind the scenes

o creates an allocation when resources become available

o creates batch job step in which it runs the batch script

sbatch <sbatch arguments> jobscript <arguments of the job script>

Slurm commands — sbatch
Submit a batch script

➢ To pass resource (and non-resource) requests

o add #SBATCH comment lines at the beginning of your job scripts

o use environment variables beginning with SBATCH_

▪ followed by the name of the matching command line option

▪ can be useful if you have access to only one project account

▪ overrules #SBATCH lines

o on the command line as options to sbatch

▪ overrules both #SBATCH and SBATCH_*

sbatch manual page

https://slurm.schedmd.com/sbatch.html

Slurm commands — squeue
Check the status of your jobs

➢ squeue checks the status of your own jobs in the job queue

$ squeue
JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)
26170 zen2 bash vsc20259 R 6:04 1 r1c01cn4

o ST = state of the job

squeue manual page – job state codes

ST Explanation ST Explanation

PD Pending – waiting for resources F Failed job – non-zero exit code

CF Configuring – nodes becoming ready TO Timeout – wall time exceeded

R Running OOM Job experienced out-of-memory error

CD Successful completion – exit code zero NF Job terminated due to node failure

squeue

https://slurm.schedmd.com/squeue.html
https://slurm.schedmd.com/squeue.html

Slurm commands — squeue
Check the status of your jobs

➢ squeue checks the status of your own jobs in the job queue

$ squeue
JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)
26170 zen2 bash vsc20259 R 6:04 1 r1c01cn4

o NODELIST(REASON) = reason why a job is waiting for execution

job reason codes

NODELIST(REASON) Explanation

Priority There are one or more higher priority jobs in the partition

QOSMaxNodePerUserLimit The limit on the maximum number of nodes per user will be exceeded

AssocMaxJobsLimit The limit on the number of running jobs for each user has been reached

JobHeldAdmin The job is held by an administrator

squeue

https://slurm.schedmd.com/squeue.html

Slurm commands — scancel
Cancel a job

➢ scancel <jobid> cancels a single job + all its job steps (if already running)

o cancel a specific job step: scancel <jobid>.<stepid>
▪ e.g., if you suspect a job step hangs, but you still want to execute

the remainder of the job script to clean up and move results

o cancel a (sub)job of a job array: scancel <jobid>_<arrayid>

➢ Some other possibilities

o --state <state> or -t <state> : cancel only jobs with given state

▪ <state> = pending, running, or suspended

o --partition <part> or -p <part> : cancel only jobs in given partition

scancel manual page

scancel <jobid>

https://slurm.schedmd.com/scancel.html

Slurm commands — sinfo
Get an overview of the cluster

➢ sinfo shows information about the partitions and their nodes in the cluster

$ sinfo
PARTITION AVAIL TIMELIMIT NODES STATE NODELIST
zen2 up 3-00:00:00 38 mix r1c01cn1.vaughan, ...
zen2 up 3-00:00:00 112 alloc r1c01cn2.vaughan, ...
zen2 up 3-00:00:00 1 idle r4c05cn2.vaughan
zen3 up 3-00:00:00 24 idle~ r6c01cn1.vaughan, ...
broadwell up 3-00:00:00 2 down~ r2c08cn1.leibniz, ...
ampere_gpu up 1-00:00:00 1 idle nvam1.vaughan

o show number of allocated/mixed/idle/down nodes

o ~ = the node is in powersave mode

sinfo

Slurm commands — sinfo
Get an overview of the cluster

➢ Show info per node

$ sinfo -N -l -n r6c01cn4.vaughan,r1c02cn3.leibniz,amdarc2.vaughan
NODELIST NODES PARTITION STATE CPUS S:C:T MEMORY
amdarc2.vaughan 1 arcturus_gpu idle 64 2:32:1 245760
r1c02cn3.leibniz 1 broadwell allocated 28 2:14:1 114688
r6c01cn4.vaughan 1 zen3 idle~ 64 2:32:1 245760

o MEMORY = total amount of memory that can be allocated on the node (in kilobytes)

o S:C:T = structure of the node: sockets/cores/(hardware) threads

➢ sinfo manual page

https://slurm.schedmd.com/sinfo.html

Slurm commands — scontrol
View Slurm configuration and state

➢ scontrol view Slurm configuration and state

➢ Show information about:

o jobs: scontrol -d show job <jobid>

▪ shows CPU_IDs of CPUs assigned to the job

o partitions: scontrol show part [<part>]

o Slurm configuration: scontrol show config

➢ Inside a job script to:

o get a list of node names one per line: scontrol show hostnames

▪ $SLURM_JOB_NODELIST contains the same list but separated by commas

scontrol manual page

scontrol

https://slurm.schedmd.com/scontrol.html

Slurm commands — srun
Run parallel tasks

➢ srun “Swiss Army Knife” to create & manage (parallel) tasks within a job

o in Slurm terminology: it creates a job step that can run one or more parallel tasks

o run multiple jobs steps simultaneously, each using a part of the allocated resources

o the better way of starting MPI programs – preferred over mpirun and mpirun

▪ usage will be shown through examples

o run a shell on the (first) allocated node(s) of a running job:

srun --jobid <jobid> --overlap --pty bash

▪ alternatively (only possible as long as the job is running): use ssh

o start an interactive job: srun --pty bash

srun manual page

srun

srun --jobid <jobid> --overlap --pty bash

https://slurm.schedmd.com/srun.html

Slurm commands — salloc
Create a resource allocation

➢ salloc creates a resource allocation

➢ What salloc does – behind the scenes

o requests the resources and waits until they are allocated

o then start a shell on the node where you executed salloc – usually the login node

o afterwards, releases the resources

➢ Important: the shell is not running on the allocated nodes!

o but, from the shell, you can start job steps on the allocated resources using srun

salloc manual page

salloc

https://slurm.schedmd.com/salloc.html

Slurm commands — sstat
Information about running jobs

➢ sstat –j <jobid>[.<stepid>] shows real-time information about a job or job step

o it is possible to specify a subset of fields to display using the -o, --format or --fields option.

➢ Get an idea of the load balancing (for an MPI job)

$ sstat -a -j 12345 -o JobID,MinCPU,AveCPU
JobCPU MinCPU AveCPU

------------ ---------- ----------
12345.extern 00:00.000 00:00.000
12345.batch 00:00.000 00:00.000
12345.0 22:54:20 23:03:50

o shows the minimum and average amount of consumed CPU time for all job steps
▪ interpretation: here, step 0 is an MPI job, and we see that the minimum CPU time consumed by the task

is close to the average, which indicates that the job is running properly and that the load balance is ok

sstat -j <jobid>[.<stepid>]

Slurm commands — sstat
Information about running jobs

➢ Checking memory usage

$ sstat -a -j 12345 -o JobID,MaxRSS,MaxRSSTask,MaxRSSNode
JobID MaxRSS MaxRSSTask MaxRSSNode

------------ ---------- ---------- ----------
12345.extern
12345.batch 4768K 0 r1c06cn3.+
12345.0 708492K 16 r1c06cn3.+

o provides a snapshot of the job's real memory usage – RSS = Resident Set Size

▪ gives an insight into how much of the requested memory the job is actively using
▪ interpretation: the largest process in the MPI job step is consuming roughly 700MB

at this moment, and it is task 16 and running on compute node r1c06cn3.vaughan

sstat manual page

https://slurm.schedmd.com/sstat.html

Slurm commands — sacct
Information about (terminated) jobs

➢ sacct shows information kept in the job accounting database

o e.g.: job start/end times, resource usage, job status, user/account details, …

o useful for monitoring, billing, performance analysis, …

o note: for running jobs the information may enter only with a delay

$ sacct -j 12345
JobID JobName Partition Account AllocCPUS State ExitCode

------------ ---------- ---------- ---------- ---------- ---------- --------
12345 NAMD-S-00+ zen2 antwerpen+ 64 COMPLETED 0:0
12345.batch batch antwerpen+ 64 COMPLETED 0:0
12345.extern extern antwerpen+ 64 COMPLETED 0:0
12345.0 namd2 antwerpen+ 64 COMPLETED 0:0

sacct

Slurm commands — sacct
Information about (terminated) jobs

➢ Retrieving job details

o get an overview for jobs in a given time range

sacct -S <start-datetime> -E <end-datetime> -X

▪ datetime format: YYYY-MM-DD[THH:MM[:SS]] (other formats possible)

o get (all) the details of a given job — module load Miller

sacct -j <jobid> -o ALL -XP | mlr --c2x --ifs='|' cat

o get the batch script of a given job

sacct -j <jobid> -B

sacct manual page

sacct -S <start-datetime> -E <end-datetime> -X

sacct -j <jobid> -o ALL -XP | mlr --c2x --ifs='|' cat

sacct -j <jobid> -B

https://slurm.schedmd.com/sacct.html

Hands-on

➢ Given the incomplete job script matrix.slurm, which compiles and runs matrix_multiply.c

o make these changes to the job script

▪ copy these files to your scratch directory

▪ add the project account to the jobscript – use ap_course_hpc_intro

▪ request 1 task with 10 cores

▪ change the output and error formats to be <job_name>.<job-id>.out

▪ send yourself an email when the job is finished

▪ add a 300 second sleep at the end of the script – so it stays in the queue for a while longer

o submit the jobscript

▪ while the job is running, try several of the Slurm commands – squeue, sstat, sacct

▪ what information is stored in the accounting database? – sacct

o wget https://calcua.uantwerpen.be/courses/introhpc/handson.tar.gz

https://calcua.uantwerpen.be/courses/introhpc/handson.tar.gz

vscentrum.be

HPC@UAntwerp introduction
8 — Multi-core parallel jobs

Why parallel computing?

➢ Faster time to solution

o distributing code over N cores

o hope for a speedup by a factor of N

➢ Larger problem size

o distributing your code over N nodes

o increase the available memory by a factor N

o hope to tackle problems which are N times bigger

➢ In practice

o gain limited due to communication, memory overhead, sequential fractions in the code, …

o optimal number of cores/nodes is problem-dependent

o but, no escape possible – computers don’t really become faster for serial code

➢ Parallel computing is here to stay!

Types of parallel computing

1.Multithreading

o shared memory

o OpenMP

2.Multiprocessing

o distributed memory

o MPI

3.Hybrid

o combination

Compute node
Processor (socket)
Core (=CPU)
Memory

Types of parallel computing

1.Multithreading

o shared memory

o OpenMP

2.Multiprocessing

o distributed memory

o MPI

3.Hybrid

o combination

OpenMP software uses multiple or
all cores in a single node
e.g. 24 threads within 1 node

MPI software can use (all) cores
in multiple nodes
e.g. 8 tasks spread over 2 nodes

Hybrid OpenMP/MPI software
e.g. 6 threads per task (1 tasks stays within 1 node)
& 8 tasks over 2 nodes

Running a shared memory job – Multithreading

➢ Shared memory job = single task with multiple CPUs per task

o all threads for the task run on within a single node

➢ Tell the program how many threads it can use

o depends on the program - e.g.: for MATLAB, use maxNumCompThreads(N)

▪ note: autodetect usually only works if the program gets the whole node

o many OpenMP programs use $OMP_NUM_THREADS

▪ Intel OpenMP recognizes Slurm CPU allocations

o for MKL-based code/operations, use $MKL_NUM_THREADS – instead of $OMP_NUM_THREADS

o for OpenBLAS (FOSS toolchain), use $OPENBLAS_NUM_THREADS

➢ Check the manual of the program you use!

o e.g., NumPy has several options (depending on how it was compiled)

Running a shared memory job – Multithreading

➢ Example script

generic-omp.slurm

#!/bin/bash

#SBATCH --job-name=OpenMP-demo
#SBATCH -A ap_course_hpc_intro
#SBATCH --ntasks=1 --cpus-per-task=64
#SBATCH --mem-per-cpu=2g

← 1 task with 64 CPUs (so 64 threads)
← 2 GB per CPU, so 128 GB total memory

module --force purge
module load calcua/2020a ← load the calcua module
module load vsc-tutorial ← load vsc-tutorial – also loads the Intel

toolchain (for the OpenMP run time)
export OMP_NUM_THREADS=$SLURM_CPUS_PER_TASK ← set the number of (OpenMP) threads to use
export OMP_PROC_BIND=true ← threads stay on the core where they’re created
omp_hello ← run the program

Running a distributed memory job – MPI

➢ Distributed memory job = several tasks running in parallel

o the tasks can be spread over multiple (different) nodes

o communication → message passing interface (MPI)

➢ Every distributed memory program needs a program starter

o some packages use system starter internally

o mpirun works, but depends on variables set in the intel modules

▪ so ensure to properly load the module

o the preferred program starter for Slurm = srun

▪ knows how Slurm distributes processes

▪ needs no further arguments if resources are correctly requested – tasks & CPUs per task

o Check the manual of the program you use!

▪ is there an option to explicitly set the program starter?

Running a distributed memory job – MPI

➢ (Intel MPI) example script
generic-mpi.slurm

#!/bin/bash

#SBATCH --job-name mpihello
#SBATCH -A ap_course_hpc_intro
#SBATCH --ntasks=128 --cpus-per-task=1
#SBATCH --mem-per-cpu=1g

← 128 MPI processes (uses 2 nodes on Vaughan, or
5 nodes on Leibniz/Breniac)

module --force purge
module load calcua/2020a ← load the calcua module
module load vsc-tutorial ← load vsc-tutorial – also loads the Intel toolchain

(for the MPI libraries)
srun mpi_hello ← run the MPI program – srun communicates

 with the resource manager

Running a hybrid OpenMP/MPI job

➢ Hybrid job = combination of OpenMP and MPI

➢ No additional tools needed to start hybrid programs

o srun does all the miracle work

▪ or mpirun in Intel MPI – provided the environment is set up correctly

▪ no need for vsc-mympirun (still used by some VSC sites)

Running a hybrid OpenMP/MPI job

generic-hybrid.slurm

#!/bin/bash

#SBATCH --job-name hybrid_hello
#SBATCH -A ap_course_hpc_intro
#SBATCH --ntasks=8 --cpus-per-task=16
#SBATCH --mem-per-cpu=1g

← 8 MPI processes with 16 threads

module --force purge
module load calcua/2020a ← load the software stack module
module load vsc-tutorial ← load vsc-tutorial – also load

 the Intel toolchain

export OMP_NUM_THREADS=$SLURM_CPUS_PER_TASK ← set the number of (OpenMP) threads to use

export OMP_PROC_BIND=true ← threads stay on the core where they’re created

srun mpi_omp_hello ← run the MPI program (mpi_omp_hello)
 srun does all the magic

Job monitoring

➢ When your job is running

o how do I know how much memory my job is using?

o how can I check if my job is running properly, i.e. using the allocated CPUs?

➢ While your job is running, you can log on to the compute nodes assigned to that job

o check which compute nodes a job uses: squeue –j <jobid>
o log on to compute node: ssh <compute-node>

➢ When logged in on the compute node, check the behavior

o htop → core & memory usage

o sar → system performance metrics like CPU / memory / disk usage over time

o vmstat → monitors system memory / processes / CPU activity / I/O statistics in real-time

o pstree → display a tree view of the running processes

Hands-on

➢ Submit the parallel jobs from this section using the provided job scripts

o a shared memory (OpenMP) job: generic-omp.slurm

o a distributed memory (MPI) job: generic-mpi.slurm

o a hybrid OpenMP/MPI job: generic-hybrid.slurm

➢ While the jobs are running

o check where the job is running

o log on to the first node allocated to that job

o run the job monitoring commands

▪ is your job behaving properly?

➢ When your job finishes

o check the output files

vscentrum.be

HPC@UAntwerp introduction
9 — Organizing job workflows

Examples of job workflows

➢ Some scenarios

o run simulations using results of a previous simulation, but with a different number of nodes

▪ e.g., in CFD: first a coarse grid computation, then refining the solution on a finer grid

o perform extensive sequential pre- or postprocessing of a parallel job

o run a sequence of simulations, each depending on result of previous one

▪ what to do when the max. wall time is reached?

o run a simulation, apply perturbations to the solution

▪ then run subsequent simulations for each perturbation

➢ Workflow = order in which the jobs will be submitted or run

Passing (environment) variables to job scripts

➢ Remember: on UAntwerp clusters, only a minimal environment is passed to the job

➢ Variables need to be passed explicitly, otherwise sbatch will not see them

o propagate a value of (already existing) environment variables

 sbatch --export=<myenv1>,<myenv2>

o pass a variable with given value to the job environment

sbatch --export=<myenv>=<value>

o note: SLURM_* variables are always propagated

sbatch --export=<myenv1>,<myenv2>

sbatch --export=<myenv>=<value>

Passing command line arguments to job scripts

➢ Command line arguments for the job script are passed after the name of the job script

o Create a test script

o Now run

 sbatch get_parameter.slurm people

o The output file will contain

 Hello people

#!/bin/bash
#SBATCH --ntasks=1 --cpus-per-task=1
#SBATCH --mem-per-cpu=500m
#SBATCH --time=5:00

echo ”Hello $1."

get_parameter.slurm

sbatch get_parameter.slurm people

Job dependencies

➢ You can instruct Slurm to start a job only

o when some (or all) jobs from list of jobs have ended

 sbatch --dependency=afterok:<jobid>

o after a job has failed

 sbatch --dependency=afternotok:<jobid>

➢ Useful to organize jobs

o powerful in combination with environment variables

o or command line arguments passed to job scripts

the sbatch manual page – look for --dependency

sbatch --dependency=afterok:<jobid>

sbatch --dependency=afternotok:<jobid>

https://slurm.schedmd.com/sbatch.html

Job dependencies – Example

Perturbation 1
Simulation

multiplier=5

Simulation
output=10

Perturbation 2
Simulation

multiplier=10

#!/bin/bash
#SBATCH --ntasks=1 --cpus-per-task=1
#SBATCH --mem-per-cpu=1g
#SBATCH --time=30:00

echo "10" >outputfile ; sleep 300

multiplier=5
mkdir mult-$multiplier ; cd mult-$multiplier
number=$(cat ../outputfile)
echo $(($number*$multiplier)) >outputfile; sleep 300
cd ..

multiplier=10
mkdir mult-$multiplier ; cd mult-$multiplier
number=$(cat ../outputfile)
echo $(($number*$multiplier)) >outputfile; sleep 300

job.slurm

Job dependencies – Example

➢ A job whose result is used by 2 other jobs

#!/bin/bash
#SBATCH --ntasks=1 --cpus-per-task=1
#SBATCH --mem-per-cpu=1g
#SBATCH --time=10:00

echo "10" >outputfile ; sleep 300

!/bin/bash
#SBATCH --ntasks=1 --cpus-per-task=1
#SBATCH --mem-per-cpu=1g
#SBATCH --time=10:00

mkdir mult-$multiplier ; cd mult-$multiplier
number=$(cat ../outputfile)
echo $(($number*$multiplier)) >outputfile; sleep 300

#!/bin/bash
first=$(sbatch --parsable --job-name job_leader job_first.slurm)
sbatch --job-name job_mult_5 --export=multiplier=5 --dependency=afterok:$first job_depend.slurm
sbatch --job-name job_mult_10 --export=multiplier=10 --dependency=afterok:$first job_depend.slurm

job_first.slurm

job_depend.slurm

job_launch.sh

Job dependencies – Example

➢ After start of the first job – squeue

 JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)

 24869 zen2 job_mult vsc20259 PD 0:00 1 (Dependency)

 24870 zen2 job_mult vsc20259 PD 0:00 1 (Dependency)

 24868 zen2 job_lead vsc20259 R 0:25 1 r1c01cn1

➢ Some time later

 JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)
 24869 zen2 job_mult vsc20259 R 0:01 1 r1c01cn1
 24870 zen2 job_mult vsc20259 R 0:01 1 r1c01cn1

➢ When finished: cat outputfile 10

cat mult-5/outputfile 50

cat mult-10/outputfile 100

vscentrum.be

HPC@UAntwerp introduction
10 — Multi-job submission

Running a large batch of small jobs

➢ Scenario: you want to run many, many, many small (short/serial) jobs

o but: submitting and tracking many short jobs → burden on scheduler

➢ Solutions:

o Job arrays: submit a large number of related (but independent) jobs at once

▪ to manage array jobs, use atools

o srun can be used to launch more tasks than requested in the job request

▪ running no more than the indicated number of tasks simultaneously at

o Worker framework: manages embarrassingly parallel computations in a single job

▪ can be used for any scenario that can be reduced to a Map-Reduce approach

o GNU parallel: tool to easily run shell commands in parallel with different inputs

▪ general-purpose tool, can be used in multiple scenarios

https://atools.readthedocs.io/en/latest/
https://github.com/gjbex/worker-ng
https://www.gnu.org/software/parallel/

Job arrays

➢ Starts from a job script for a single job in the array

➢ Result: program will be run for all input files (100)

#!/bin/bash
#SBATCH --ntasks=1 --cpus-per-task=1
#SBATCH --mem-per-cpu=512M
#SBATCH --time 15:00

INPUT_FILE="input_${SLURM_ARRAY_TASK_ID}.dat"
OUTPUT_FILE="output_${SLURM_ARRAY_TASK_ID}.dat"

./test_set _${SLURM_ARRAY_TASK_ID} -input ${INPUT_FILE} -output ${OUTPUT_FILE}

← for every run, there is a
← separate input file and
← an associated output file

job_array.slurm

$ sbatch --array 1-100 job_array.slurm

Job arrays – atools

➢ Features of atools

o provides a logging facility and commands to investigate the logs

▪ which items failed or did not complete → restart only those

o has limited support for Map-Reduce scenarios

▪ prepration phase – split up data in manageable chunks

▪ process these chunks in parallel

▪ postprocessing phase – combine the results into one file

➢ atools versus Worker and GNU parallel

o atools is less efficient than Worker for very small jobs

o atools uses job arrays, so relies on the scheduler to start all work items

o Worker does all the job management for the work items itself (including starting them)

worker-and-atools – developed by our colleague gjb

https://gjbex.github.io/worker-and-atools/

atools example – Parameter exploration

➢ weather will be run for all data, until all computations are done

➢ Can also run across multiple nodes

temperature, pressure, volume
293.0, 1.0e05, 87
..., ..., ...
313, 1.0e05, 75

data.csv
#!/bin/bash
#SBATCH --ntasks=1 --cpus-per-task=1
#SBATCH --mem-per-cpu=512m
#SBATCH --time=10:00
module --force purge
ml calcua/2020a atools/slurm

source <(aenv --data data.csv)
./weather -t $temperature -p $pressure -v $volume

weather.slurm

(data in CSV format)

login$ module load atools/slurm
login$ sbatch --array $(arange --data data.csv) weather.slurm

Hands-on

➢ Run some scenarios for multi-job submissions

➢ Round the table question: which scenario applies most to your use case?

▪ will you be running large parallel jobs

▪ or some medium-sized jobs

▪ or lots of small jobs

vscentrum.be

HPC@UAntwerp introduction
11 — Extra topics

Running an interactive job

➢ srun <regular resource request options> --pty bash

➢ Example: An interactive session to run a shared memory application

➢ Example: Starting an MPI program in an interactive session

login$ srun -n 1 -c 16 -t 1:00:00 --pty bash
rXcYYcnZ$ module --force purge
rXcYYcnZ$ ml calcua/2020a vsc-tutorial
rXcYYcnZ$ omp_hello
…
rXcYYcnZ$ exit

login$ srun -n 64 -c 1 -t 1:00:00 --pty bash
rXcYYcnZ$ module --force purge
rXcYYcnZ$ ml calcua/2020a vsc-tutorial
rXcYYcnZ$ srun --overlap mpi_hello
…
rXcYYcnZ$ exit

Running an interactive job – X11

➢ First make sure that your login session supports X11 programs:

o Log in to the cluster using ssh -X to forward X11 traffic

o Or work from a terminal window in a VNC session

➢ Same as for non-X11 jobs but simply add the --x11 option before --pty bash

➢ Few or no X11 programs support distributed memory computing

➢ so usually you’ll only be using one task…

➢ You can even start X11 programs directly through srun, e.g.,

login$ srun -n 1 -c 64 -t 1:00:00 --x11 --pty bash
rXcYYcnZ$ module --force purge
rXcYYcnZ$ ml calcua/2020a …
rXcYYcnZ$ xclock
rXcYYcnZ$ exit

login$ srun -n 1 -c 1 -t 1:00:00 --x11 xclock

Using the visualisation node

➢ Use case: sometimes running GUI programs is necessary – e.g.: for visualisations

➢ Leibniz has one visualisation node: viz1.leibniz

o NVIDIA Quadro Pascal P5000 GPU

o has Xfce as desktop/window manager

o uses VirtualGL for graphics acceleration → e.g.: vglrun glxgears

➢ To access to remote desktop, you need to

o use a VNC client, such as TurboVNC or TigerVNC

o setup a SSH-tunnel (when accessing from outside Belgium)

Remote visualisation @ UAntwerp

https://www.xfce.org/
https://virtualgl.org/
https://www.turbovnc.org/
https://tigervnc.org/
https://docs.vscentrum.be/antwerp/remote_visualization_uantwerp.html

Using containers – Apptainer

➢ Use case: you want to use a Conda environment

o Conda installations involve many small files - file quota!

o scratch is not optimized for working with many small files

➢ Solution: package your Conda environment in a (large) container

o Apptainer is available to build and run your container images

o you can manually build your container using build scripts – like a Dockerfile

➢ Alternative: use hpc-container-wrapper – formerly known as Tykky

o use requirements.txt (pip) or environment.yaml (Conda) to build a container image

o provides wrapper scripts to transparently call executables within the container environment

https://apptainer.org/

Using containers – hpc-container-wrapper

➢ Setup build directories:

$ export APPTAINER_CACHEDIR=$VSC_SCRATCH/apptainer/cache
$ export APPTAINER_TMPDIR=$VSC_SCRATCH/apptainer/tmp
$ mkdir –p $APPTAINER_CACHEDIR
$ mkdir –p $APPTAINER_TMPDIR

➢ Create the container:

$ module load hpc-container-wrapper/0.3.3
$ conda-containerize new --prefix
 "$VSC_SCRATCH/bsoup" environment.yaml

Similar for pip-containerize

name: bsoup4
channels:
 - conda-forge
dependencies:
 - beautifulsoup4

environment.yaml

Using containers – Using the containerized packages

➢ Call your installed packages (within a job):

$ export PATH="$VSC_SCRATCH/containers/bsoup/bin:$PATH"
$ python -c "from bs4 import BeautifulSoup; soup = BeautifulSoup('<p>Hello
World</p>', 'html.parser'); print(soup.p.text)"
Hello World

➢ Still missing packages? Update the container:

$ conda-containerize update --post-install
 post.sh "$VSC_SCRATCH/containers/bsoup”

pip install requests
conda install -c bioconda pyfaidx

post.sh

vscentrum.be

HPC@UAntwerp introduction
12 – Final notes

Some best practices

➢ Before starting to submit you should always check

o are there any errors in the script?

o are the required modules loaded?

o is the correct executable used?

o did you use the right process starter (srun)?

o does the job start in the right directory?

➢ Check your jobs at runtime

o login to a compute node and inspect your jobs

▪ If you see that the CPU is idle most of the time that might be the problem

o check the job accounting information (e..g.: MinCPU and AvgCPU)

o alternatively: run an interactive job for the first run of a set of similar runs

o try to benchmark the software for (I/O) scaling issues when using MPI

Some site policies

➢ Our policies on the cluster:

o nodes are shared resources

o priority based scheduling – so not “first come, first get”

o fairshare mechanism – make sure one user cannot monopolise the cluster

o Accounting @ CalcUA → using a project account is mandatory

➢ Implicit user agreement:

o the cluster is valuable research equipment

o do not use it for other purposes than your research for the university

▪ No cryptocurrency mining or SETI@home and similar initiatives

▪ Not for private use

o you have to acknowledge the VSC in your publications

➢ Do not share your account nor your keys

https://docs.vscentrum.be/how_do_i_acknowledge_the_vsc_in_publications.html

Project accounts – credits

➢ At UAntwerp Tier-2, we monitor cluster use and send periodic reports to group leaders

➢ On VSC Tier-1, you get compute time allocation (number of node days)

o enforced through project credits

o requested through a project proposal

o free test ride “Starting Grant” - motivation required

➢ On KU Leuven Tier-2, you need compute credits

▪ bought directly via KU Leuven

▪ has fixed start-up cost

▪ used resources (number and type of nodes)

▪ duration (used wall time)

User support

➢ Questions? → contact us: hpc@uantwerpen.be

o office : G.309-311 (CMI)

o phone : +32 3 265 XXXX with XXXX
 3860 (Stefan), 3855 (Franky), 3852 (Kurt), 3879 (Bert), 8980 (Carl), Robin (9229), …

➢ mailing-list for announcements: calcua-announce@sympa.uantwerpen.be

o every now and then a more formal “HPC newsletter”

➢ Guidelines for help

o be as precise as possible – e.g.: give job id, submit dir, output files, …

o help us help you – read (and understand) the relevant documentation

CalcUA website – VSC docs –Slurm docs

mailto:hpc@uantwerpen.be
mailto:calcua-announce@sympa.uantwerpen.be
https://calcua.uantwerpen.be/
https://docs.vscentrum.be/
https://slurm.schedmd.com/documentation.html

Evaluation

➢ Please fill in our short questionnaire before 30 Nov

➢ Let us know what you liked and how we can improve our courses

➢ Thank you for your participation!

https://forms.office.com/e/FEZ6DKEhTP

More training

www.vscentrum.be/training

http://www.vscentrum.be/training

	HPC@UAntwerp introduction
	Slide 1: HPC@UAntwerp introduction
	Slide 2: Table of contents – Part 1
	Slide 3: Table of contents – Part 2

	1 — Introduction to the VSC
	Slide 4: HPC@UAntwerp introduction
	Slide 5: CalcUA and VSC
	Slide 6: The European HPC landscape
	Slide 7: UAntwerp Tier-2 infrastructure
	Slide 8: UAntwerp Tier-2 infrastructure
	Slide 9: VSC Tier-1 infrastructure
	Slide 10: VSC Tier-1 infrastructure
	Slide 12: Characteristics of a HPC cluster

	2 — Get a VSC account
	Slide 13: HPC@UAntwerp introduction
	Slide 14: SSH and public/private key pairs
	Slide 15: Required software
	Slide 16: Required software
	Slide 17: Create your VSC account

	3 — Connect to the cluster
	Slide 18: HPC@UAntwerp introduction
	Slide 19: A typical workflow
	Slide 20: Types of cluster nodes
	Slide 21: Connecting to the cluster – Using SSH
	Slide 22: Connecting to the cluster – Using SSH
	Slide 23: Using an SSH configuration file
	Slide 24: Hands-on

	4 — Transfer your files to the cluster
	Slide 25: HPC@UAntwerp introduction
	Slide 26: A typical workflow
	Slide 27: File systems and user directories
	Slide 28: Block and file quota
	Slide 29: Transferring your files
	Slide 30: Globus data sharing platform
	Slide 31: Best practices for file storage
	Slide 32: Hands-on

	5 — Select the software and build your environment
	Slide 33: HPC@UAntwerp introduction
	Slide 34: A typical workflow
	Slide 35: System software
	Slide 36: Development software
	Slide 37: Application software
	Slide 38: Using licensed software
	Slide 39: Software installation and support
	Slide 40: Selecting software
	Slide 41: Toolchains
	Slide 42: CalcUA modules
	Slide 43: Using modules
	Slide 44: Using modules – best practices
	Slide 46: Hands-on

	6— Define and submit your job
	Slide 47: HPC@UAntwerp introduction
	Slide 48: A typical workflow
	Slide 49: Running batch jobs
	Slide 50: Job submission workflow – Behind the scenes
	Slide 51: Job script example
	Slide 52: Important Slurm concepts
	Slide 53: Slurm resource requests – Overview
	Slide 54: Slurm resource requests – Project account
	Slide 55: Slurm resource requests – Tasks & CPUs per task
	Slide 56: Slurm resource requests – Memory per CPU
	Slide 57: Slurm resource requests – Wall time
	Slide 58: Slurm resource requests – Partitions
	Slide 59: CalcUA clusters – Partitions and node information
	Slide 60: Hands-on
	Slide 61: Slurm resource requests – Faster communication
	Slide 62: Slurm resource requests – Exclusive node access
	Slide 63: Slurm resource requests – Number of nodes
	Slide 64: Non-resource-related options – Job name
	Slide 65: Non-resource-related options – Redirect stdout / stderr
	Slide 66: Non-resource-related options – Mail notifications
	Slide 67: The job runtime environment
	Slide 68: The job runtime environment

	7 — Slurm commands
	Slide 70: HPC@UAntwerp introduction
	Slide 71: Slurm commands – Overview
	Slide 72: Slurm commands — sbatch Submit a batch script
	Slide 73: Slurm commands — sbatch Submit a batch script
	Slide 74: Slurm commands — squeue Check the status of your jobs
	Slide 75: Slurm commands — squeue Check the status of your jobs
	Slide 76: Slurm commands — scancel Cancel a job
	Slide 77: Slurm commands — sinfo Get an overview of the cluster
	Slide 78: Slurm commands — sinfo Get an overview of the cluster
	Slide 79: Slurm commands — scontrol View Slurm configuration and state
	Slide 80: Slurm commands — srun Run parallel tasks
	Slide 82: Slurm commands — salloc Create a resource allocation
	Slide 83: Slurm commands — sstat Information about running jobs
	Slide 84: Slurm commands — sstat Information about running jobs
	Slide 85: Slurm commands — sacct Information about (terminated) jobs
	Slide 86: Slurm commands — sacct Information about (terminated) jobs
	Slide 87: Hands-on

	8 — Multi-core parallel jobs
	Slide 88: HPC@UAntwerp introduction
	Slide 89: Why parallel computing?
	Slide 91: Types of parallel computing
	Slide 92: Types of parallel computing
	Slide 93: Running a shared memory job – Multithreading
	Slide 94: Running a shared memory job – Multithreading
	Slide 95: Running a distributed memory job – MPI
	Slide 96: Running a distributed memory job – MPI
	Slide 97: Running a hybrid OpenMP/MPI job
	Slide 98: Running a hybrid OpenMP/MPI job
	Slide 99: Job monitoring
	Slide 101: Hands-on

	9— Organizing job workflows
	Slide 102: HPC@UAntwerp introduction
	Slide 103: Examples of job workflows
	Slide 104: Passing (environment) variables to job scripts
	Slide 105: Passing command line arguments to job scripts
	Slide 106: Job dependencies
	Slide 107: Job dependencies – Example
	Slide 108: Job dependencies – Example
	Slide 109: Job dependencies – Example

	10 — Multi-Job submission
	Slide 110: HPC@UAntwerp introduction
	Slide 111: Running a large batch of small jobs
	Slide 112: Job arrays
	Slide 113: Job arrays – atools
	Slide 114: atools example – Parameter exploration
	Slide 115: Hands-on

	11 - Extra topics
	Slide 116: HPC@UAntwerp introduction
	Slide 117: Running an interactive job
	Slide 118: Running an interactive job – X11
	Slide 119: Using the visualisation node
	Slide 120: Using containers – Apptainer
	Slide 121: Using containers – hpc-container-wrapper
	Slide 122: Using containers – Using the containerized packages

	Final notes
	Slide 123: HPC@UAntwerp introduction
	Slide 124: Some best practices
	Slide 127: Some site policies
	Slide 128: Project accounts – credits
	Slide 129: User support

	Outro
	Slide 130: Evaluation
	Slide 131: More training

