
vscentrum .be

Introduction to Linux
Ine Arts, Franky Backeljauw, Michele Pugno, Robin Verschoren

Version Spring 2026 – Part 1

Overview

Part 1 – basics

➢ What is GNU/Linux?

o available Linux -like environments

➢ The shell

o what is the shell?

o command-line basics

o options & arguments

o getting help

➢ The filesystem

o navigating the filesystem

o manipulating directories & files

o using wildcard patterns

o reading and editing text files

➢ Useful tools

o download & extract files

o comparing files and directories

o processing text -formatted structured data

➢ Streams & pipelines

o input and output streams & redirection

o command pipelines

o overview of frequently used commands

What is GNU/Linux?

➢ Unix-like computer operating system (OS)

o free and open-source, worldwide community, active development

➢ Under the hood: Linux kernel

o abstraction between hardware and software

o device drivers, system calls, process and memory management, …

➢ Typically offers GNU utilities and libraries

o basic tools to work with files, compile programs, …

o e.g.: coreutils, binutils, Bash shell, …

➢ Comes in many flavours, called distributions

o bundles desktop environments, applications, …

Available Linux - like environments

Microsoft Windows

➢ Microsoft Subsystem for Linux (WSL)

o by default, the installed Linux distribution will be Ubuntu

➢ Installation instructions —for recent versions of Windows

o search for PowerShell, right -click on the icon and select “Run as administrator”

o type this in the PowerShell window to install WSL

wsl --install Ubuntu

o restart your machine

➢ Optional: use Windows Terminal

o use Command Prompt, PowerShell and bash (via WSL) from one application

https://learn.microsoft.com/en-us/windows/wsl/
https://learn.microsoft.com/en-us/windows/wsl/
https://learn.microsoft.com/en-us/windows/terminal/

Available Linux - like environments

Apple macOS

➢ Terminal app (built -in) or iTerm2

➢ note: macOS is based on BSD (Unix), thus offering BSD variants of commands

o use Homebrew to install the GNU utilities —first: run the one -line installation command

brew install coreutils findutils gnu-tar gnu-sed grep wget

o the GNU variants of commands usually start with g

▪ e.g., use (GNU) gsed instead of (BSD) sed

▪ likewise for gls, ggrep, gtar, ...

▪ but not always, e.g., wget

Alternative options

➢ Use an online terminal emulator —e.g.: https://sandbox.bio/tutorials/playground

https://iterm2.com/
../brew.sh
https://sandbox.bio/tutorials/playground

vscentrum .be

The shell —Part 1
Exploring the command line

What is the shell?

➢ A program that interprets commands and sends them to the OS

➢ Sometimes referred to as ”the terminal” or a “ Command - Line Interface ” (CLI)

o waits for input and performs the requested tasks

o the input language is a scripting language (variables, iterations, ...)

o provides access to 100s of commands/programs

➢ Different shell programs exist

o on most Linux systems, the default shell is called bash (Bourne Again SHell)

o note: on macOS, the default shell is zsh, but bash is also available

bash

Command - line basics

➢ $ and text preceding it is called the “ prompt ”

o executing a command: type a command after the prompt and press the Enter key

o autocompletion: type part of the command and press the Tab key (↹)

 $ ls -l /etc/host↹

➢ Linux systems are case and space sensitive

o files: myfile is not the same as MyFile

o commands: spaces separate parts of commands

➢ Some keyboard shortcuts when using the Bash shell environment

bash

Left ← and Right → moving around the line Ctrl + a go to the beginning of the line

Up ↑ and Down ↓ browse the command history Ctrl + e go to the end of the line

Ctrl + r backward history search Ctrl + l clear the screen

Hands - on

➢ Enter the following commands and try to interpret the output

$ echo Hello, world.

 $ date

 $ date --utc

 $ whoami

 $ hostname

 $ uptime

 $ clear

$ sleep 3

$ time sleep 3

$ who

$ echo $SHELL

$ echo -n Hello, world.

$ cal

$ history

Hands - on

➢ Note: some commands may not be available yet

o more software can be added by installing extra packages

o installation instructions depend on OS and/or distributions

➢ Linux and Windows WSL (Ubuntu)

o advice: first update the package list

 $ sudo apt update

o when a command is missing, a message is shown

 $ cal
 Command 'cal' not found, but can be installed with:

sudo apt install ncal

o install the ncal package to make the cal command available

 $ sudo apt install ncal

Hands - on

➢ Note: some commands may not be available yet

o more software can be added by installing extra packages

o installation instructions depend on OS and/or distributions

➢ macOS (Homebrew)

o note: on Homebrew packages are reffered to as formulae

o optional: install a helper command (first time only)

$ brew tap homebrew/command-not-found

▪ this allows you to search for a missing command

 $ brew which-formula tree

o install the tree formula to make the tree command available

 $ brew install tree

Anatomy of a command

➢ Single command: program that does one thing

 $ command

➢ Arguments (parameters): provide the input/output that the command interacts with

 $ command argument1 argument2 [...]

➢ Options : modify a command’s behavior (also called flags)

 $ command –option single dash + one letter (short form)

 $ command --long-option double dash + one word (long form)

➢ Generally, they compose as follows:

 $ command [-o]... [--long-option]... [argument]...

Options & arguments

➢ Interpreted by the command itself → usage depends on the command

o convention : options first, non - option arguments last

o short options can be combined, the order often doesn’t matter

 $ date -R –u = $ date -Ru

o but for some commands, strict ordering rules apply

 $ find –maxdepth 2 –type f

o non-option arguments often refer to a filename

 $ less myfile

o but not always

 $ echo "This is an example"

 $ date +"%A %e %B"

Types of commands

➢ A command can be either :

o any program (or script) on the system

▪ use which to find out where the program is located/installed

o a built - in shell command

▪ get an overview with man builtin

o an alias or (user-defined) shorthand for a more complex command

▪ use alias to see the currently defined aliases

o a (user-defined) shell function

type

Getting help

➢ Documentation for commands is available as online Linux man pages

o ask Google or ChatGPT for help – the web is your friend!

➢ Or directly from the command-line itself

o ask a command about its use with the --help or -h options (if available)

 $ ls --help

o manual pages for commands — use q to quit

 $ man ls

o more elaborate info manuals — use q to quit

 $ info ls

➢ Search man pages for keywords

 $ man –k <keyword>

man

https://man7.org/linux/man-pages/index.html

Getting help

➢ Efficiently reading man pages

 ↓ / ↑ or j / k scrolling up or down

 h help for the man page viewer

 q quit reading the man page

➢ Searching through man pages

 / + ”word” + Enter search for the given word

 n find the next occurrence

 N find the previous occurrence

➢ Conventions for describing key combinations

 ^-<key> = Ctrl + <key> press Ctrl and the given key together

 C-<key> = Ctrl + <key>

 M-<key> = Alt + <key> M stands for “Meta” key (note: Option on Apple keyboards)

man

Hands - on

➢ Get help for some of the commands from the previous hands -on

o try browsing through the man page

o what are the options and which arguments does it accept?

o try searching for some words in the man page

➢ For those using macOS

o install the GNU coreutils: brew install coreutils

o look at the man page of the commands ls and gls

o what is the difference between these commands?

Summary — The shell

➢ In your terminal window, you interact with the
(bash) shell

➢ You type commands with options and arguments
$ command [--option]... [argument]...

➢ You can not know all the options and exceptions:

o use man pages

o use the web

> _

vscentrum .be

The filesystem — Part 1
Navigating the filesystem

Manipulating files & directories

The filesystem — Directories and files

➢ Tree of directories and files

➢ File name describes the full location
(also called path) in the file system

o /home/student/introlinux/scripts

o /tmp/myfile.txt

o / is called the root directory

➢ Directories are separated by /

➢ The filesystem is case sensitive

o note: macOS is case insensitive by default

/

bin

etc

home

student

.bashrc

Desktop

introlinux scripts

scr0.sh

scr1.sh

Pictures

img1.jpg

img2.jpg

other_user

lib

tmp myfile.txt

The filesystem — Absolute and relative path

➢ Absolute file name path starts from root /

➢ Relative file name starts from current working directory

➢ pwd prints the current working directory

o at login, usually your home directory

➢ Use .. to refer to a parent directory

➢ E.g., starting from /home/student

relative path absolute path

.. /home

../other_user /home/other_user

../.. /

introlinux /home/student/introlinux

/

bin

etc

home

student

.bashrc

Desktop

introlinux scripts

scr0.sh

scr1.sh

Pictures

img1.jpg

img2.jpg

other_user

lib

tmp myfile.txt

pwd

The filesystem — Absolute and relative path

➢ Absolute file name path starts from root /

➢ Relative file name starts from current working directory

➢ pwd prints the current working directory

o at login, usually your home directory

➢ Use .. to refer to a parent directory

➢ note: on Windows

o folders are separated by \

o the filesystem is case insensitive

o the root indicates a physical partition, e.g. C: \

o there can be multiple (root) trees

pwd

/

bin

etc

home

student

.bashrc

Desktop

introlinux scripts

scr0.sh

scr1.sh

Pictures

img1.jpg

img2.jpg

other_user

lib

tmp myfile.txt

Navigating t he filesystem

➢ Use cd <directory> to change the current directory

 $ cd Downloads
 $ cd ../Documents
 $ cd - go back to the previous directory
 $ cd go to your home directory

➢ ls (without arguments) lists the current directory’s contents

➢ ~ (“tilde”) is a shorthand for the absolute path to your home directory (*)

 $ cd ~ = $ cd /home/<username>
 $ cd ~/Downloads = $ cd /home/<username>/Downloads

➢ A single . points to the current directory

 $ cd ./Downloads = $ cd Downloads

(*) note: on macOS, when using Belgian keyboard layout (AZERTY), use Option + n

cd
ls

Hands - on

➢ Try out the following sequence of commands

 $ cd

 $ ls

 $ cd Documents

 $ pwd

 $ cd ..

 $ cd ./Documents

 $ pwd

$ cd /bin

$ ls

$ pwd

$ cd ~

$ pwd

$ cd –

$ pwd

Manipulating directories and files

➢ Warning: no “recycle bin” or undo!

o be very careful when moving/copying/removing files at the command -line!

➢ mkdir creates directories

 $ mkdir dir1 dir2 dir3

o create nested directories

 $ mkdir -p topdir/subdir/subsubdir

➢ rmdir removes empty directories

 $ rmdir dir1 dir2 dir3

➢ touch creates an empty file, or updates the timestamp of the file if it already exists

o note: commands to create real file content will follow later

mkdir
rmdir

Move, copy and remove

➢ mv source target moves (renames) files and directories

o if target = existing file → overwrite

o if target = existing directory → move inside it

 $ mv source1 source2 ... target move list of items into existing target directory

➢ cp source target copies files and directories

o same rules as mv, except:

 $ cp srcdir target
 cp: -r not specified; omitting directory ‘srcdir’

o recursively copy directories and their content:

 $ cp -r srcdir target

➢ rm file1 file2 ... removes (deletes) files — remember: no “recycle bin” or undo!

 $ rm -r mydir recursively deletes directories with their contents

mv
cp
rm

Using wildcards

➢ Wildcards help generate lists of filenames, e.g.:

 $ mv file*.txt target

o Bash replaces file*.txt by the list of matching files – called “wildcard expansion ”

➢ * matches everything → file*.txt matches any filename which

o starts with file and ends with .txt

➢ Remember: no “recycle bin" or undo!

o typing mistake can be dangerous !

➢ Safety first for cp, mv and rm

o using -i or --interactive asks for confirmation before overwriting or deleting

o alternatively, use echo in front of the command to see the wildcard expansion

Wildcard patterns

➢ * any sequence of (0 or more) characters

 file*.txt → file.txt file_copy.txt file1.txt ...

➢ ? any single character

 file?.txt → file1.txt file2.txt ... files.txt

➢ [set of characters] any single character from the given set

 [fF]ile.txt → file.txt File.txt

➢ [!set of characters] any single character not from the given set

 file[!123].txt → file4.txt file5.txt ... files.txt

➢ [[:class:]] use a predefined character class

https://github.com/micromatch/posix-character-classes

Hands - on

➢ Create new directories and files in your home directory, according to the given diagram

o use touch file.txt to create empty file

o check your result with tree ~/hands-on1

o challenge yourself: do this exercise
from your home ~ without using cd

➢ Let’s move things around

o copy the files in dir1.1 to its parent directory

o rename dir1 to dir0

o copy dir2 (including its contents) to dir2_backup

o delete the files in dir2 using wildcards

o restore the backup directory

~ hands-on1

dir1 dir1.1 file_c

dir2

filea.txt

file_b

Hands - on

➢ Which names match the following patterns?

 [abcdefghijk]*.pdf

 backup.[0-9][0-9][123]

 [Ff]ile?.*

 file_[[:digit:]].txt

file_1.txt

cv.pdf

backup-001

backup.182

introLinux.pdf

A.pdf

File_C.docx

thesis.pdf

Filea.txt

backup.634

Reading and editing text files

➢ Reading (displaying) text files

o cat → display the entire content of a text file

o less → allows forward and backward navigation and searching

o head -n <x> or tail -n <x> → print the first/last x lines of a file

➢ Edit text files using text editors that run inside the terminal

o nano → simple and straightforward text editor

▪ user-friendly, with an easy -to-use interface

o vi → stands for visual interface, takes some practice

▪ use “modes” for insert or commands

o emacs → highly customizable, extensible text editor

▪ powerful editing capabilities with, built -in support for multiple languages, with plugins

▪ note: has a steep learning curve (e.g., lots of keybindings)

Summary — The filesystem

➢ All your files are ordered in a directory tree

➢ You refer to your file by its path
/example/of/an/absolute/path

➢ You can navigate through your filesystem

➢ You can move , remove & copy files,
but be careful when using:

o wildcards *

o recursive option -r

➢ You can read and edit files

/

vscentrum .be

Useful tools — Part 1
Hands-on & examples

Hands - on

➢ Scenario: a colleague sends you a link to a dataset (here: zip -file) and
you want to know how many inputs there are in the file squeue.txt

o note: step by step instructions and commands are given
▪ it is up to you to look up the correct usage

o download the file https://calcua.uantwerpen.be/courses/intro -linux/input.zip — use wget

o extract (or unzip) the files — use unzip

▪ can you list the content of the zip file without unzipping it?

o locate the file named squeue.txt — use tree (*) and find

▪ which tool was better suited?

o count the number of lines in the file squeue.txt— use wc

(*) note: the tree command may not be installed yet

https://calcua.uantwerpen.be/courses/intro-linux/input.zip
https://calcua.uantwerpen.be/courses/intro-linux/input.zip
https://calcua.uantwerpen.be/courses/intro-linux/input.zip

Hands - on

➢ Scenario: you download some scripts, and you quickly want to know the value of a parameter

o note: step by step instructions and commands are given
▪ it is up to you to look up the correct usage

o download the files: https://calcua.uantwerpen.be/courses/intro -linux/pi_montecarlo.tar.gz

o extract the files — use tar

▪ pay close attention to the options!

o you encounter two scripts with a similar name: script01_new.py and script01_latest.py

▪ show the difference between these two files, but ignore white spaces — use diff

o show the line where parameter n_points is assigned — use grep

https://calcua.uantwerpen.be/courses/intro-linux/pi_montecarlo.tar.gz
https://calcua.uantwerpen.be/courses/intro-linux/pi_montecarlo.tar.gz
https://calcua.uantwerpen.be/courses/intro-linux/pi_montecarlo.tar.gz

Download & extract files

➢ Download files with wget

 $ wget https://[...].zip

➢ ZIP file format

 $ zip -r file.zip source_dir

 $ unzip file.zip

➢ TAR / TAR.GZ

 $ tar -czf file.tar.gz source_dir

 $ tar -xzf file.tar.gz

o TAR stands for Tape Archive — also called “tarball ”

o more common in Unix/Linux environments

o preserves file permissions, ownership, and timestamps,
making it more suitable for backups and archives

wget
unzip
tar

diff — Comparing files and directories

➢ Show differences between text files

 $ diff -i file1 file2 ignore case

 $ diff -w file1 file2 ignore all white space

 $ diff -y file1 file2 output in two columns

 $ diff -r dir1 dir2 recursively compare directories

diff

Hands - on

➢ Scenario: you see that a colleague opens file scores.csv with comma separated values in Excel
to sort the data by Score

o not on your watch — you use Miller like a pro!

➢ Start by reading Miller in 10 minutes

➢ Install the Miller command mlr

o on Linux and Windows WSL (Ubuntu) : sudo apt install miller

o on macOS (with Homebrew) : brew install miller

➢ Try to “pretty -print” the scores.csv file

o also, try to sort it by the values of the field Score

https://miller.readthedocs.io/en/latest/
https://miller.readthedocs.io/en/latest/10min

Processing text - formatted structured data

➢ Why our sysadmin Miller (obligatory slide!)

o easily query, shape and/or reformat CSV, TSV, JSON, … data files

o pretty-print data files, convert between file formats

o using compact verbs instead of a programming language

➢ Some examples

mlr

$ mlr --icsv --ojson cat scores.csv convert scores.csv to JSON format

$ mlr --c2j cat scores.csv using a keystroke -saver flag

$ mlr --csv tail -n 4 scores.csv print header and last 4 lines

$ mlr --c2p cut -f Name,Gender scores.csv pretty-print only fields Name and Gender

$ mlr --c2p filter '$Course=="History"'
then cut -f Name,Score
then sort -r Score scores.csv

for the course History

show Name and Score

sorted in descending order

https://miller.readthedocs.io/en/latest/file-formats/

Summary — Useful tools

➢ Some things you used to do with a graphical
interface

o downloading files,

o decompressing .zip or .tar.gz archives,

o opening .csv in Excel, ...

➢ However, it is easy to do with the command line &
it can save you time (automatization – see scripting)

➢ You can discover and install new shiny tools

> _

vscentrum .be

Streams & pipelines
Input and output streams & redirection

Command pipelines

Input and output streams

➢ Output and input (I/O) of commands is managed using streams and file descriptors

o streams provide an interface with powerful formatted input and output functions (high-level)

o under the hood, streams use file descriptors (fd) to keep track of the I/O -resources (low -level)

 stream readable name purpose fd

 stdout standard output for normal output 1

 stderr standard error for printing warnings and errors 2

 stdin standard input from which commands receive input 3

o by default, “stdin” is read from the keyboard, while “stdout” and “stderr” are sent to the terminal

➢ We can redirect the output and input streams, to

o write output to a file

o send output from one command to input of another

o read stdin from a file

Output redirection

➢ To redirect an output stream, use operator i> with its associated file descriptor (fd) i

➢ Redirect standard output (stdout)

 $ ls > ls-output.txt = $ ls 1> ls-output.txt

o the file ls-output.txt is created and contains the command’s output

o note: stderr is still shown in terminal

➢ Redirect standard error (stderr)

 $ ls wrong-filename 2> ls-error.txt

➢ Redirect both stdout and stderr

 $ ls *.txt *.jpg > ls-output.txt 2> ls-errors.txt to different files

 $ ls *.txt *.jpg > ls-output-and-errors.txt 2>&1 to the same file

 = $ ls *.txt *.jpg &> ls-output-and-errors.txt to the same file

>

Output redirection

➢ Hiding a program’s output

 $ ls > /dev/null

o /dev/null is a special “file” that discards everything written to it

➢ Warning: redirecting (>) creates a new file

o if a file exists with the same name, it will be overwritten!

o if the command produces no output, the file will be empty

➢ Append (>>) stdout and/or stderr to the end of a file without erasing previous content

 $ date >> diary.txt

 $ echo "Dear diary, today ..." >> diary.txt

 $ ls notfound 2>> ls-errors.txt

 $ ls *.txt *.jpg >> ls-output-and-errors.txt 2>&1

 = $ ls *.txt *.jpg &>> ls-output-and-errors.txt

>>

Input redirection

➢ Standard input (stdin) is by default read from the keyboard

➢ The input redirection operator < filename opens a file, and the program processes it as input

o example, using the command -line calculator bc

 $ echo "2 * 17" > homework.txt
 $ bc < homework.txt
 34

o useful for automating commands that normally require user input

o or for reading from specific sources (devices) directly

➢ Redirecting both standard input and standard output

 $ bc < homework.txt > answers.txt

<

Command pipelines

➢ Combine several commands by chaining them using the “pipe” operator | (*)

 $ command1 | command2 | command3 [| ...]

o a pipeline creates a flow of data between commands

o stdout from command1 is directly sent to stdin of command2 (etc)

o the commands run in parallel, each command processes input as it becomes available

➢ Example: scrolling through the list of all processes with ps and less

 $ ps aux | less

➢ Create complex commands from simple building blocks

 $ who | cut -d' ' -f1 | sort | uniq > users

➢ note: to pipe stderr from a command, redirect it to stdout

 $ command1 2>&1 | command2

(*) note: on macOS, when using Belgian keyboard layout (AZERTY), use Shift + Option + l

|

Hands - on

➢ Given the file chemistry.txt, how many courses are

taught by Wouter Herrebout in the first semester?

o note: use pipelines whenever possible!

o investigate the file — use cat

o print only the lines belonging to the first semester — use grep

o of those lines, select the lines containing Wouter Herrebout — use grep

o count the resulting number of lines — use wc

o challenge yourself: use mlr instead

Hands - on

➢ Which are, in alphabetical order, the last 5 course codes starting with 1001WET?
Write them to a new file.

o get the lines where the course code starts with 1001WET

o sort the lines in alphabetical order (by course code) —use sort

▪ is sort alphabetically or numerically by default?

▪ how can you ignore cases?

o Of those lines, select the last 5 —use a pipe and tail

o write the output to a new file

o edit your pipeline to instead sort alphabetically by course name

▪ how do you specify the 'tab' delimiter? – search the web

Hands - on

➢ Which course is listed more than once in the file chemistry.txt?

o print each unique line of the file, with the number of times it occurred —use uniq

▪ carefully read the last line of DESCRIPTION in the man page

o print only the course(s) which are listed more than once, together with the number of times

Overview of f requently used commands

➢ Typical commands for pipelines

 cat concatenate files (useful to print out file content)

 grep filter lines which match a given search pattern

 head / tail print first/last lines of input

 sort sort input alphabetically

 uniq report or leave out repeated lines

 wc print the number of lines, words and bytes of input

 sed transform input (pattern replacement and more)

➢ Find more commands in the GNU core utilities manual

https://www.gnu.org/software/coreutils/manual/html_node/index.html

➢ You can redirect the output (> or >>) and input (<)
flow of a command

o stdin

o stdout

o stderr

➢ You can pipe (|) the output of one command to the
input of another to build a pipeline
$ command1 | command2 | command3 ...

➢ When you get comfortable with frequently used
commands, pipelines feel natural

Summary — Streams & pipelines

cat sort

wc -l uniq

Part 2 – Sneak preview — Shell scripts

➢ shell script = text file containing a series of commands

➢ Example script “myscript.sh”

➢ Run (execute) the script

 $ bash myscript.sh

➢ note:

o commands are separated by newlines or by semicolons ‘ ;’ (as in the terminal)

o commands are executed one after the other, just as if you entered them manually

my_analysis input.data > my_results/science.txt
tar -cvzf my_results.tar.gz my_results
rm input.data

bash

vscentrum .be

Introduction to Linux
Ine Arts, Franky Backeljauw, Michele Pugno, Robin Verschoren

Version Spring 2026 — Part 2

Overview

Part 2 – diving deeper

➢ The environment

o environment variables

o aliases & environment startup

➢ The shell

o variable and arithmetic expansions

o command substitution

o escaping special characters

➢ Useful tools

o regular expressions

o search and replace

➢ Bash scripting basics

o writing and running shell scripts

o using variables & command -line arguments

o the for loop

➢ The filesystem

o permissions & ownership

➢ Running programs

o processes and threads

o managing processes

➢ More bash scripting

vscentrum .be

The environment
Environment variables

Aliases & environment startup

Environment variables

➢ We can use variables in the shell

 $ myvar=some_value set the value for variable myvar

 $ echo $myvar get the current value of myvar — this is called “ variable expansion ”

 $ set display all (shell) variables (and functions)

o no spaces around ‘=’

o no spaces in some_value unless using quotes

o these are “plain” variables — they only exist in the running shell itself

➢ Environment variables are special

 $ export myvar make myvar an environment variable

 $ printenv display (exported) environment variables

o they are passed on to processes started from the shell

o they can influence the behaviour of programs (e.g. OMP_NUM_THREADS, PS1)

export

Environment variables

➢ Some standard environment variables

PATH a colon -separated list of directories that are searched
when you enter the name of an executable program

HOME the path name of your home directory (~)

USER your user name

SHELL the name of your shell program

PWD the current working directory

TMPDIR directory for temporary files (usually /tmp)

➢ Example: access an environment variable from within a Python script

$ python3 -c 'import os;
print("hi there,", os.getenv("USER"), "!")'

$PATH

Aliases

➢ Substitute a string for a simple command

➢ $ alias <name>=<value> means that <name> will be replaced by <value>

➢ Handy to set default options and simplify your commands

 $ alias ls="ls -F --color=auto" append filetype indicator, colorize output

 $ alias lart="ls -Falrt --color=auto" show hidden files, recently modified first

➢ Removing (deleting) aliases – in the current shell only

 $ unalias <name> removes the alias for <name>

 $ unalias -a removes all aliases

alias

Environment startup

➢ User-defined aliases, variables and functions are reset when restarting the shell

➢ Store the settings in a startup file so they are persistent for your environment

o applied every time you start an interactive shell

 ~/.bashrc you can define your own aliases and functions here

o other files are applied for a login shell and when exiting a shell

▪ see Bash Startup Files for more information

➢ note: on macOS, the default shell nowadays is zsh (Z shell)

o for zsh, the startup file used for an interactive shell is named ~/.zshrc

o see Z Shell Startup Files for more information

https://www.gnu.org/software/bash/manual/html_node/Bash-Startup-Files.html
https://zsh.sourceforge.io/Intro/intro_3.html

Summary — The environment

➢ Environment variables are passed on to processes

➢ $PATH is a list of directories your shell searches for
commands

➢ You can create an alias for long/complex commands
you use often

➢ Add aliases, env. variables, functions, … to your
startup file (~/.bashrc) to have them available
every shell session

export PATH="$HOME/bin:$PATH"
export EDITOR=nano

alias ll='ls -alF --color=auto'

echo "Welcome, $USER! Today is $(date)."
echo "Your preferred editor is $EDITOR."

~/.bashrc

vscentrum .be

The shell — Part 2
Variable and arithmetic expansions

Command substitution

Shell expansions

➢ When you type a command -line and press Enter

o the shell performs several processes on the text before it carries out your command

o the process that makes this happen is called expansion

Variable expansion

➢ $variable → variable’s current value

 $ echo $USER print the current value

 $ set display all variables

 $ echo $SUER what if variable doesn’t exist?

 $ echo ${USER}_home use {} to disambiguate the variable name

 $ echo $USER_home doesn’t work without {}

 $ myvar='Hello, world!' set a variable

 $ echo $myvar

Shell expansions

Arithmetic expansion

➢ $((expression)) → result of expression

 $ echo $((10 + 5 + 3))

o arithmetic expression — integers only!

o operators: +, -, *, / , % (remainder), ** (exponentiation)

o single parentheses may be used to group multiple subexpressions:

 $ echo $(((5**2) * (3*4)))

Command substitution

➢ $(command) → output of command

 $ echo We are now $(date)

 $ echo I see $(ls -A | wc -l) files and subdirs

Shell expansions

Escaping special characters & using quotes

 $ echo The total is $100.00 # ?!

➢ Use the escape character \ for literal use of special characters ($, \, `, {, }, (,), *, ␣)

 $ echo The total is \$100.00

➢ Inside single quotes '' special characters lose their meaning → no expansion at all

 $ echo text ~/*.txt {a,b} $(echo foo) $((2+2)) $USER
 $ echo 'text ~/*.txt {a,b} $(echo foo) $((2+2)) $USER'
 $ echo "text ~/*.txt {a,b} $(echo foo) $((2+2)) $USER"

➢ Inside double quotes "" special characters lose their meaning except $, \, `

 $ echo "$USER $((2+2)) $(cal)"
 $ echo "The total is \$100.00"

Shell expansions

Other

➢ Word splitting: words separated by space become separate arguments

 $ touch "two words.txt"
 $ ls -l two words.txt
 $ ls -l "two words.txt"
 $ ls -l two\ words.txt
 $ ls -l two↹

➢ Quote removal: after all expansions, quotes are removed unless you escape or quote the quotes

 $ echo "hello world"
 $ echo \"hello\" '"world"'

Summary — The shell

➢ The shell interprets your command before running it,
by expanding :

o $VARIABLES

o $((arithmetic))

o $(command output)

➢ Ignore the meaning of special characters by using
single quotes (') or escape (\)

$ echo '"text: *.txt"' \
 $(echo foo) $((2+2))

echo "text: *.txt" foo 4

> "text: *.txt" foo 4

shell expands

shell executes

vscentrum .be

Useful tools — Part 2
Regular expressions

Search and replace

Regular expressions

➢ Also called “regex”

o symbolic notation used to match text patterns

o similar to wildcards (*, [], ?), but more powerful

➢ Many programs and programming languages support regular expressions

o grep, sed, ...

o Text editors, e.g. emacs

o Python, Perl, Matlab...

➢ Note: slight differences exist in notation and supported patterns

Regular expressions

➢ Example: counting animals in the Bible

$ grep -Eo ' (dragon|serpent|lion|eagle)s? ' bible.txt | sort | uniq -c

 10 dragon
 4 dragons
 10 eagle
 3 eagles
 43 lion
 13 lions
 14 serpent
 4 serpents

grep

Regular expressions

➢ Literal characters and digits

 $ grep lion bible.txt

➢ “Metacharacters” are used for repetitions, grouping, alternatives, ...

o Two notations for metacharacters

▪ basic regular expressions (BRE)

 ^ $. [] * \(\) \{ \} \? \+ \|

▪ extended regular expressions (ERE)

 ^ $. [] * () { } ? + |

➢ Note: on the slides, we use ERE for readability

o using $ grep -E = $ egrep

grep –E
egrep

Regular expressions — Metacharacters

➢ . Match any single character

 $ grep '.word' words.txt

o Note: remark the difference with using wildcards

 $ touch .zip 1.zip 1zip 22.zip 2zip

 $ ls *zip

 $ ls *.zip

 $ ls | grep .zip

➢ ^ $ Called “anchors ”, matches the beginning (^) or end ($) of a line

 $ grep '^word' words.txt

 $ grep 'word$' words.txt

 $ grep '^word$' words.txt

Regular expressions — Character classes

➢ [] Character class

 [lw]ord matches lord and word

 [l-w]ord matches lord, mord, nord, ..., word

 [^lw]ord matches any ord not preceded by l or w

 [^l-w]ord matches any ord not preceded by l, ..., w

 ^[A-Z] matches any uppercase letter at the beginning of a line

 ^[-AZ] matches only the character -, A or Z at the beginning of a line

Regular expressions — Repetitions

➢ ? Match preceding element zero or one time

➢ * Match preceding element zero or more times

➢ + Match preceding element one or more times

➢ {} Match preceding element a specific number of times

 {n} exactly n times

 {n,m} at least n times and /or at most m times – for or, drop n or m

➢ Some examples:

 A* matches <empty string>, A, AA, ...

 .* matches any sequence of characters

 \$[1-9][0-9]{2,} match any amount of $100 or more

Regular expressions — Sub-expressions, alternatives

➢ () sub-expression

 (tick)+ matches 1 or more repetitions of (the word) tick

➢ | alternatives

 word|lord matches word and lord

 (w|l)ord matches word and lord, using grouping

 (w|l|sw)ord matches word, lord and sword

➢ \n reference to the n-th subexpression (used in find and replace)

Regular expressions — Cheat sheet

. Match any (BRE)

^ $ anchor beginning or end of line

[] character classes

? 0 or 1 times \?

* 0 or more times

+ 1 or more times \+

{n} n times \{n\}

{n,m} more than n, less than m times \{n,m\}

() subexpression \(\)

| alternative \|

\n reference to the n-th subexpression

➢ For a comprehensive overview, check this RegEX cheat sheet

https://cheatsheets.zip/regex

Hands - on

➢ Use grep -E on the file words.txt

o which words start with chemi?

o which words contain both are and be? (answer using 1 regular expression)

o which words start with a capital letter and contains two consecutive letters a?

o how many five letter words do you find? (use a pipeline)

sed – Search and replace

➢ sed = stream editor

o works on standard input or a set of input files

o perform text manipulations using regular expressions – non-interactively , using ‘commands’

o powerful, but somewhat complex

➢ Typical usage: search and replace

 $ sed 's/regexp/replacement/'

o processes input line by line, prints the modified text to standard output

o by default, replaces only the first occurrence on each line

o by default, matching is done case sensitive

o by default, uses BRE

➢ For larger tasks, you might choose awk, Perl, Python, ...

sed

sed – Search and replace

➢ sed [options] <script> <file>

 -n suppress automatic printing
 -i edit file in -place (instead of printing to standard output)
 -E use extended regex (ERE)

o <script> = [line selection]<command>

 n[,m] line number n (until m)
 $ refers to the last line
 /regex/ lines that match regex

▪ <command> performs an action on the (matched) text

 s/regex/repl/ replace matches for regex by repl
 d delete the matched line(s)

 <command>I use case insensitive matching

 <command>g act on all matches on this line (global replacement)

sed

sed – Search and replace

➢ Some examples:

➢ Check the sed manual or this sed cheat sheet

sed

$ sed -n '3,5p' distros.txt print only lines 3 to 5

$ sed -i '1d' distros.txt delete the first line in the file

$ sed '/Fedora/d' distros.txt equivalent of grep –v Fedora

$ sed '/Fedora/a from Red Hat' distros.txt append the given text on a new line
after the matched pattern

$ sed 's/Fedora/& from Red Hat/' distros.txt use & to reference the whole matched

pattern in the replacement string

$ sed 's+/+-+g' distros.txt use another delimiter (+ instead of /)

https://www.gnu.org/software/sed/manual/sed.html
https://www.gnu.org/software/sed/manual/sed.html
https://cheatsheets.zip/sed
https://cheatsheets.zip/sed

Hands - on

➢ Find and replace all instances “ chemie” by “scheikunde” in the file chemistry.txt
and write the output to a new file.

o make sure the replacement is case insensitive

o do the replacement directly in the file

➢ In distros/distrostab.txt, rewrite MM/DD/YYYY as YYYY-MM-DD.

o match the pattern MM/DD/YYYY using 3 subexpressions

o construct the replacement by referring to the subexpressions

Summary — Useful tools

➢ Regular expressions are a powerful tool to match
patterns of text

o You can use metacharacters for:

▪ wildcards,

▪ repetitions,

▪ groups, …

o There can be subtle differences in syntax with
different programming languages

➢ You can search & replace text
$ sed 's/old/new/g' file.txt

L.{3}x

1 W L i n u x P
H P C a L % X $
C A L C U A ! x
X ! @ # x I N u
^ F r 4 n k Y U
l i n U x () A
Z L 2 & X Z x W

vscentrum .be

Bash scripting basics
Writing and running shell scripts

Shell scripts — Writing shell scripts

➢ shell script = text file containing a series of commands

➢ Example script “myscript.sh”

 $ bash myscripts.sh run (execute) the script

➢ Note that

o commands are separated by newlines or by semicolons ‘ ;’ – just as in the terminal

o commands are executed one after the other – just as if you entered them manually

➢ Example scripts in https://calcua.uantwerpen.be/courses/intro -linux/scripts.zip

my_analysis input.data > my_results/science.txt
tar -cvzf my_results.tar.gz my_results
rm input.data

bash

https://calcua.uantwerpen.be/courses/intro-linux/scripts.zip
https://calcua.uantwerpen.be/courses/intro-linux/scripts.zip
https://calcua.uantwerpen.be/courses/intro-linux/scripts.zip

Shell scripts — Note about line endings

➢ Note about line endings

o line endings are encoded differently under Windows and Unix/Linux

▪ Windows style: carriage return + line feed (CRLF, \r\n)

▪ Unix/Linux style: newline (\n)

o this can introduce problems when running bash scripts

➢ Check which encoding is used:

 $ file filename

➢ If needed, convert your “Windows style” file into a “Unix/Linux” style:

 $ dos2unix –n inputfile outputfile

➢ Note: any suitable text editor can do this as well

file
dos2unix

Shell scripts — Running shell scripts

$ cat scripts/script01.sh

$ bash script01.sh call the interpreter (bash) ourselves

$ chmod +x script01.sh

$ script01.sh doesn’t work because work dir is not in PATH!

$./script01.sh the interpreter from the “shebang” is used

#! /bin/bash

This is our first script.

echo 'Hello World!' # comment

“shebang ”

./

Shell scripts — Running shell scripts

➢ #! is called “shebang ” – it tells the system which interpreter should execute the script

o for a bash script:

 #!/bin/bash

o spaces (between parts) are optional:

 #!/bin/bash = #! /bin/bash = #! /bin/bash

➢ Any scripting language interpreter can be used (not just bash)

o example for Python:

 #!/usr/bin/python3 uses that specific Python executable

o or preferably:

 #!/usr/bin/env python3 uses the first python3 found in PATH

Shell scripts — Using variables

➢ Remember:

o Setting a variable: without $, no spaces around = e.g., myname=some_value

o Using a variable (variable expansion): with $ e.g., echo $myname

➢ User variables can not start with a digit: $1, $2, ...

o these are special variables, a.k.a. “command -line arguments”

#!/bin/bash # script02.sh

currenttime=$(date +"%x %r %Z")
myname=$USER

echo "id: $myname, current time: $currenttime"

Shell scripts — Command -line arguments

$./script07.sh these are four arguments
$./script07.sh "this is a single argument"

➢ Using command -line arguments in your script:

o more than 9 args? → ${10}, ${11}, ... or use shift (see next slide)

o last arg → ${!#} or ${@: -1} (space is required) or $BASH_ARGV (bash only)

o list of all command -line arguments: $@

#!/bin/bash # script07.sh

echo "Number of arguments: $#
\$0 = $0
\$1 = $1
\$2 = $2
...
\$9 = $9"

Bash scripting — The for loop

for variable in list; do commands; done

➢ list can be any bash expression resulting in a list, e.g.

 for file in *.txt; do ... done loop over each txt file

➢ if “in list” is omitted, for loops over the command -line arguments

#!/bin/bash # script09.sh
for i in A B C D; do
 echo $i
done

Bash scripting — The for loop

#!/bin/bash # script09b.sh

for i in $(seq 1 10); do
 echo $i
done

for i in $(seq 11 0.75 20); do
 echo $i
done

for i in {21..30}; do
 echo $i
done

Hands - on

➢ Write a script that adds up all command -line arguments

o loop over all command -line arguments

o add each argument to the total — use arithmetic expansion $(())

o test your script with different inputs — make sure your script is executable

➢ What do you expect to happen when instead of integers you input:

▪ text?

▪ decimals?

o test your expectations!

Hands - on

➢ Write a script that loops over each command -line argument and that

o creates a directory dir_<argument> in the current location

o copies a template file input.txt to input_<argument>.txt into this directory

o replaces every occurrence of “<param>” in this file by the value of the argument

➢ Challenge yourself!

o we want the name of the template file as the first command line argument

o run previous script without changes, with this new argument – what happens?

o try to fix what went wrong — look into the shift command

Hands - on

➢ Here is an example of a script
with some more logic structures

 if

 while

 case

 break / continue

 functions

 ...

o Try to figure out what it does

#!/bin/bash # script12.sh
while echo -n "enter number: "; read NUM
do
 if [$NUM -eq $NUM] 2>/dev/null; then
 :
 else
 echo " $NUM is not a number"
 continue
 fi
 if [[$(($NUM % 2)) -eq 0]]; then
 echo " $NUM is an even number"
 continue
 fi
 echo " $NUM is an odd number"
 break
done

Summary — Bash scripting basics

➢ You can combine commands into a reusable script

➢ To run your script, you need to:

o add a shebang

o grant execute permission

➢ Up to now, you learned how to use:

o variables,

o arguments ($1)

o for loops (for ...; do ...; done)

#!/bin/bash

vscentrum .be

The filesystem — Part 2
Permissions & ownership

Permissions & ownership

➢ Every user has a unique id and (user)name and belongs to one or more groups

➢ To see your id, name and groups, run id

 uid your user id

 gid primary group id

 groups list of all groups you are a member of

➢ Every file or directory belongs to a user and a group with different access permissions for

o user

o group

o others = all other users who are not a member of the file’s group

id

Permissions & ownership

➢ Use ls -l to see permissions and ownership :

 $ ls -l scripts
 total 512
 -rwxr-xr-x 1 vsc2xxxx antwerpenall 76 Feb 8 12:43 script01.sh
 ...
 permissions user group size modif.time filename

➢ -rwxrwxrwx = three kinds of permissions for “user,” “group” and “others”

 permission file access directory access

 read read file’s contents list directory contents

 write modify file’s contents create, remove & rename files (also needs x)

 execute run file as a program enter directory & access contents

Setting permissions

➢ chmod can change the permissions for files or directories

➢ Add/remove permissions using chmod + or chmod -

 $ chmod +w file.txt add write permission for all users

 $ chmod g-w file.txt remove write permission for the group the file belongs to

 $ chmod ug+x,o-r file.txt

➢ Or using numbers instead, where 0=none, 1=x, 2=w, 3= wx, 4=r, 5=rx, 6=rw, 7=rwx

 $ chmod 640 file.txt

➢ -R = Recursive, change permissions on a directory and all its contents

 $ chmod -R go-xr my_private_dir

chmod

Changing ownership

➢ chown can change the owner and/or group of files and directories

 $ chown owner file.txt

 $ chown owner:group file.txt

 $ chown :group file.txt

o -R = Recursive

 $ chown -R owner:group my_dir

chown

Summary — The filesystem

➢ Every file/directory has permissions :

o read (r)

o write (w)

o execute (x)

➢ These permissions are separate for

o owner (u)

o group (g)

o others (o)

➢ As file owner, you can modify the permissions
and ownership

$ ls -l
> -rwxr-xr-x me mygrp script.sh

vscentrum .be

Running programs
Processes and threads

Managing processes

Processes and threads

➢ A process = running instance of a program

o has a unique identifier or PID (Process ID)

o can start other processes, its child processes

o consists of one or more threads

➢ Threads share access to the process’ memory

o but processes cannot access other processes’ memory !

➢ Parallelization on multiple CPU cores

o multiple processes -> “distributed memory parallelism ”

o multiple threads in one process -> “shared memory ”

Processes and threads — Looking at processes

➢ ps prints information on running processes .

 $ ps show processes in the current shell

 PID TTY TIME CMD

 8627 pts/12 00:00:00 bash

 19621 pts/12 00:00:00 ps

 $ ps x show all processes of current user

 $ ps ax show all processes of all users

 $ ps u show username, CPU and memory usage
 (can be combined with previous, e.g. $ ps axu)

 $ ps -u <user> show processes of the given user

➢ top or htop show processes together with CPU and memory usage in real time

ps
top
htop

Processes and threads — Managing processes

Foreground processes

➢ Example: run xclock with $ xclock -update 1

o once the process is started, it is executing and occupying the terminal

o you no longer have access to the prompt; it prevents you to run other commands

➢ To terminate the foreground process, press Ctrl + c

o xclock disappears, the prompt returns

➢ To stop (pause) the foreground process, press Ctrl + z

o the process is stopped, the prompt returns

o the process can be restarted again using

 $ fg process resumes “in the foreground”

 $ bg process continues ”in the background”

bg
fg

Processes and threads — Managing processes

Background processes

➢ To start a process in the background, terminate the command by &

 $ xclock -update 1 & bash prints the job number and PID, e.g. [1] 9582

➢ When having multiple background processes, use $ jobs to see a list

 $ xclock -update 1 &
 [1] 9582

 $ xclock -update 1 &
 [2] 9588
 $ jobs
 [1]- Running xclock -update 1 &
 [2]+ Running xclock -update 1 &

➢ Use the jobs’ number to control the different processes, e.g.

 $ fg %2 run job 2 in the foreground

&
jobs

Processes and threads — Managing processes

Terminating processes

➢ Reminder : Ctrl + c terminates the foreground process

➢ Use the command kill <PID> to terminate any process (owned by you)

 $ kill 12345 terminate process with PID 12345
 note: the process may belong to another shell

➢ kill %<jobnum> terminates a background process

 $ kill %2 terminate job 2, with time for cleanup

 $ kill -KILL %2 terminate job 2 immediately

➢ Use $ kill -STOP and $ kill -CONT to pause/resume processes

kill

Processes and threads — Looking at threads

➢ The program sysbench is a multi -threaded benchmark tool

 $ sysbench cpu --threads=3 --time=60 run

➢ $ ps -T displays each process’ threads

 $ ps -T $(pidof sysbench)

 PID SPID TTY STAT TIME COMMAND

 3172174 3172174 pts/1 Sl 0:00 sysbench cpu --threads=3 run

 3172174 3172175 pts/1 Rl 0:09 sysbench cpu --threads=3 run

 3172174 3172176 pts/1 Rl 0:09 sysbench cpu --threads=3 run

 3172174 3172177 pts/1 Rl 0:09 sysbench cpu --threads=3 run

➢ $ top -H displays CPU usage for each thread in real time

o when running top, hit f to display other info (e.g. CPU number)

o alternative: use htop instead (has a nice text -graphics interface with colored output)

top
htop

Summary — Running programs

➢ Processes are independent programs ,
each with a PID

➢ Threads are smaller units inside a process

➢ You can run commands as a background process ,
to keep interacting with your shell while it runs

➢ You can inspect running processes (ps, top)
and terminate (kill) then

vscentrum .be

More bash scripting
Conditional and looping constructs

Functions & debugging

Bash Scripting — if conditional construct

➢ Generic form

if test1; then commands1
elif test2; then commands2
elif ...
else commandsn
fi

➢ Test syntax – different forms possible

if test expression

if [expression] equivalent form

if [[expression]] enhanced version – easier to use, e.g. in combination with variables

if ((expression)) for arithmetic expressions only

#!/bin/bash # script04.sh

x=5
if [$x -eq 5] ; then
 echo "x equals 5."
else
 echo "x does not equal 5."
fi

Bash Scripting — Test expressions

Tests with files

file1 -nt file2 file1 is newer than file2

file1 -ot file2 file1 is older than file2

-d file file exists and is a directory

-f file file exists and is a regular file

-s file file exists and has size > 0

-L file file exists and is a symbolic link

-r file file exists and is readable

-w file file exists and is writable

-x file file exists and is executable

➢ Search for “bash file test operators” (or man test) to see more exotic ones...

Bash Scripting — Test expressions

Tests with strings

-n string the length of the string > 0

-z string the length of the string = 0

string1 = string2 strings are equal

string1 != string2 strings are not equal

string1 > string2 string1 sorts after string2

string1 < string2 string1 sorts before string2

Bash Scripting — Test expressions

Tests with integers

int1 -eq int2 int1 = int2

int1 -ne int2 int1 ≠ int2

int1 -le int2 int1 ≤ int2

int1 -lt int2 int1 < int2

int1 -ge int2 int1 ≥ int2

int1 -gt int2 int1 > int2

Bash Scripting — Test expressions

Combining test expressions

➢ Example:

 if [[$((x % 5)) -eq 0 && $((x % 2)) -eq 0]]
 then
 echo "$x is a multiple of 10"
 fi

[] [[]]

AND -a &&

OR -o ||

NOT ! !

Bash Scripting — The while loop

➢ while test; do commands; done

#!/bin/bash # script06.sh

count=1
while [$count -le 5]; do
 echo $count
 count=$((count + 1))
done
echo "value of count: $count"

echo "Finished."

Bash Scripting — The while loop

➢ Alternatively, use this one-liner at the prompt:

 $ cat squeue.txt | while read line; do ... done

➢ Combining while and read gives an easy (quick & dirty) way to process lines of output

o note: no worries about how many spaces separate fields

➢ Note: squeue.txt can be found in the input.zip file

#!/bin/bash # script06b.sh

while read jobid partition jobname user state rest; do
 echo $jobid $state
done < squeue.txt

Bash Scripting — read input values

➢ Create variables and read their values from standard input

➢ Remarks:

o -n prevents echo from printing a new line

o extended version: see script05a.sh

#!/bin/bash # script05.sh

echo -n "Please enter an integer -> "
read int

echo -n "Enter one or more values > "
read var1 var2 var3 var4 var5

echo "int = ${int}, var1 = ${var1}, ..."

Bash Scripting — Command -line arguments

➢ Each time shift is executed, the value of $# is reduced by one, and
the value of $2 is moved to $1, the value of $3 is moved to $2, etc.

o useful for looping over a variable number of arguments

#!/bin/bash # script08.sh

echo "first argument in list: $1"
echo "last argument in list: ${@: -1}"

count=1
while [[$# -gt 0]]; do
 echo "Nr of arguments left = $#"
 echo "Argument $count = $1"
 count=$((count + 1))
 shift
done

Bash Scripting — case conditional construct

case word in
 pattern1) commands1 ;;
 pattern2) commands2 ;;
 ...
esac #!/bin/bash # script11.sh

read -p "enter word > "
case $REPLY in
 [[:alpha:]]) echo "single alphabetic character." ;;
 [ABC][0-9]) echo "A, B, or C followed by digit." ;;
 ???) echo "is three characters long." ;;
 *.txt) echo "is a word ending in '.txt'" ;;
 *) echo "is something else." ;;
esac

Bash Scripting — break and continue

#!/bin/bash # script12.sh
while echo -n "enter number: "; read NUM
do
 if [$NUM -eq $NUM] 2>/dev/null; then
 :
 else
 echo " $NUM is not a number"
 continue
 fi
 if [[$(($NUM % 2)) -eq 0]]; then
 echo " $NUM is an even number"
 continue
 fi
 echo " $NUM is an odd number"
 break
done

no-op

Bash scripting — Functions

➢ Useful for sequence of commands that is often repeated

➢ Functions can also take arguments

➢ Example using functions defined in another file: script03a.sh and script03b.sh

#!/bin/bash # script03.sh
function func { # shell function
 echo "use func for $1"
 return
}

echo "step 1"
func "step 2"
echo "step 3"

Bash scripting — Debugging

➢ How to detect and handle errors in a script?

➢ Each finished command has an exit status — by convention:

o success → exit status 0

o error → exit status non - zero — the status values can differ for each command

➢ The special variable $? holds the last process’ exit status:

 $ ls existing_file
 existing_file
 $ echo $?
 0
 $ ls missing
 ls: cannot access missing: No such file or directory
 $ echo $?
 2

Bash scripting — Debugging

➢ Debugging a script = inspecting the commands that it executes

➢ Put set -x at the beginning of your script

o will print out all steps as they are executed

o it’s a way to follow what’s going on if your script behaves unexpectedly

➢ Alternatively, use set –e –u

o will stop the script if any command fails

o or when an empty variable is used

➢ For more info info on debugging, check Debugging Bash scripts

➢ For other options to use with the set command, see Bash options

https://tldp.org/LDP/Bash-Beginners-Guide/html/sect_02_03.html
http://www.tldp.org/LDP/abs/html/abs-guide.html#OPTIONS

Summary — More bash scripting

➢ Other than for loops , variables and arguments ,
you can use:

o conditionals (if ...; then ...; fi),

o while loops (while ...; do ...; done),

o case,

o break & continue,

o functions, …

➢ The exit status indicates success or failure

➢ set -x is great for debugging :
it prints every step as it executes

$ bash

The end

Course feedback

➢ Please fill in our short questionnaire before April 1st

➢ Let us know what you liked and how we can improve our courses

➢ Thank you for your participation!

https://forms.cloud.microsoft/e/U4QQhL6eCg

Some links

➢ The Linux Command Line (downloadable book by William Shotts, 6th edition, 2024)

➢ Introduction to the GNU/Linux and UNIX command line (legacy)

➢ The (GNU) Bash Reference Manual

➢ Greycat’s Wiki Bash Guide and FAQ and Reference Sheet

o Bash Pitfalls – common mistakes made by bash users

➢ The Linux Documentation Project (TLDP)

o Advanced Bash -Scripting Guide (by Mendel Cooper)

➢ Covering various Linux topics: Let’s talk Linux @ How -To Geek, OMG! Ubuntu, …

➢ Cheat sheets via cheatsheets.zip or devhints.io

http://linuxcommand.org/tlcl.php
http://linuxcommand.org/tlcl.php
https://bootlin.com/blog/command-line/
https://bootlin.com/blog/command-line/
https://www.gnu.org/software/bash/manual/
https://www.gnu.org/software/bash/manual/
http://mywiki.wooledge.org/BashGuide
http://mywiki.wooledge.org/BashGuide
http://mywiki.wooledge.org/BashFAQ
https://mywiki.wooledge.org/BashSheet
https://mywiki.wooledge.org/BashPitfalls
https://mywiki.wooledge.org/BashPitfalls
http://www.tldp.org/
http://www.tldp.org/
http://www.tldp.org/LDP/abs/html/
http://www.tldp.org/LDP/abs/html/
http://www.tldp.org/LDP/abs/html/
http://www.tldp.org/LDP/abs/html/
http://www.howtogeek.com/tag/linux/
http://www.howtogeek.com/tag/linux/
http://www.howtogeek.com/tag/linux/
https://www.omgubuntu.co.uk/
https://cheatsheets.zip/
https://devhints.io/

More training

➢ HPC core facility CalcUA

o Introduction to Linux

o HPC@UAntwerp introduction

o Supercomputers for starters

➢ VSC Trainings

o trainings organized by other VSC
sites and abroad (including LUMI,
PRACE, EUROCC)

➢ Training sessions by Geert Jan Bex

https://hpc.uantwerpen.be/
https://hpc.uantwerpen.be/
https://www.vscentrum.be/vsctraining
https://www.vscentrum.be/vsctraining
https://gjbex.github.io/Training-sessions/
https://gjbex.github.io/Training-sessions/

	Day 1 - GNU/Linux
	Slide 1: Introduction to Linux
	Slide 2: Overview
	Slide 3: What is GNU/Linux?
	Slide 4: Available Linux-like environments
	Slide 5: Available Linux-like environments

	Day 1 — Exploring the command line
	Slide 6: The shell — Part 1
	Slide 7: What is the shell?
	Slide 8: Command-line basics
	Slide 9: Hands-on
	Slide 10: Hands-on
	Slide 11: Hands-on
	Slide 12: Anatomy of a command
	Slide 13: Options & arguments
	Slide 14: Types of commands
	Slide 15: Getting help
	Slide 16: Getting help
	Slide 17: Hands-on
	Slide 18: Summary — The shell

	Day 1 — The filesystem
	Slide 19: The filesystem — Part 1
	Slide 20: The filesystem — Directories and files
	Slide 21: The filesystem — Absolute and relative path
	Slide 22: The filesystem — Absolute and relative path
	Slide 23: Navigating the filesystem
	Slide 24: Hands-on
	Slide 25: Manipulating directories and files
	Slide 26: Move, copy and remove
	Slide 27: Using wildcards
	Slide 28: Wildcard patterns
	Slide 29: Hands-on
	Slide 30: Hands-on
	Slide 31: Reading and editing text files
	Slide 32: Summary — The filesystem

	Day 1 — Userful tools
	Slide 33: Useful tools — Part 1
	Slide 34: Hands-on
	Slide 35: Hands-on
	Slide 36: Download & extract files
	Slide 37: diff — Comparing files and directories
	Slide 38: Hands-on
	Slide 39: Processing text-formatted structured data
	Slide 40: Summary — Useful tools

	Day 1 — Redirection & pipelines
	Slide 41: Streams & pipelines
	Slide 42: Input and output streams
	Slide 43: Output redirection
	Slide 44: Output redirection
	Slide 45: Input redirection
	Slide 46: Command pipelines
	Slide 47: Hands-on
	Slide 48: Hands-on
	Slide 49: Hands-on
	Slide 51: Overview of frequently used commands
	Slide 52: Summary — Streams & pipelines
	Slide 53: Part 2 – Sneak preview — Shell scripts

	Day 2 - Diving deeper
	Slide 54: Introduction to Linux
	Slide 55: Overview

	Day 2 — The environment
	Slide 56: The environment
	Slide 57: Environment variables
	Slide 58: Environment variables
	Slide 59: Aliases
	Slide 60: Environment startup
	Slide 61: Summary — The environment

	Day 2 — The shell
	Slide 62: The shell — Part 2
	Slide 63: Shell expansions
	Slide 64: Shell expansions
	Slide 65: Shell expansions
	Slide 66: Shell expansions
	Slide 67: Summary — The shell

	Day 2 — Regular expressions
	Slide 68: Useful tools — Part 2
	Slide 69: Regular expressions
	Slide 70: Regular expressions
	Slide 71: Regular expressions
	Slide 72: Regular expressions — Metacharacters
	Slide 73: Regular expressions — Character classes
	Slide 74: Regular expressions — Repetitions
	Slide 75: Regular expressions — Sub-expressions, alternatives
	Slide 76: Regular expressions — Cheat sheet
	Slide 77: Hands-on
	Slide 78: sed – Search and replace
	Slide 79: sed – Search and replace
	Slide 80: sed – Search and replace
	Slide 81: Hands-on
	Slide 82: Summary — Useful tools

	Day 2 — Bash scripting basics
	Slide 85: Bash scripting basics
	Slide 86: Shell scripts — Writing shell scripts
	Slide 87: Shell scripts — Note about line endings
	Slide 88: Shell scripts — Running shell scripts
	Slide 89: Shell scripts — Running shell scripts
	Slide 90: Shell scripts — Using variables
	Slide 91: Shell scripts — Command-line arguments
	Slide 92: Bash scripting — The for loop
	Slide 93: Bash scripting — The for loop
	Slide 94: Hands-on
	Slide 95: Hands-on
	Slide 97: Hands-on
	Slide 98: Summary — Bash scripting basics

	Day 2 — Ownership & permissions
	Slide 99: The filesystem — Part 2
	Slide 100: Permissions & ownership
	Slide 101: Permissions & ownership
	Slide 102: Setting permissions
	Slide 103: Changing ownership
	Slide 104: Summary — The filesystem

	Day 2 — Running programs
	Slide 105: Running programs
	Slide 106: Processes and threads
	Slide 107: Processes and threads — Looking at processes
	Slide 108: Processes and threads — Managing processes
	Slide 109: Processes and threads — Managing processes
	Slide 110: Processes and threads — Managing processes
	Slide 111: Processes and threads — Looking at threads
	Slide 112: Summary — Running programs

	Supplemental - More bash scripting
	Slide 113: More bash scripting
	Slide 114: Bash Scripting — if conditional construct
	Slide 115: Bash Scripting — Test expressions
	Slide 116: Bash Scripting — Test expressions
	Slide 117: Bash Scripting — Test expressions
	Slide 118: Bash Scripting — Test expressions
	Slide 119: Bash Scripting — The while loop
	Slide 120: Bash Scripting — The while loop
	Slide 121: Bash Scripting — read input values
	Slide 122: Bash Scripting — Command-line arguments
	Slide 123: Bash Scripting — case conditional construct
	Slide 124: Bash Scripting — break and continue
	Slide 125: Bash scripting — Functions
	Slide 126: Bash scripting — Debugging
	Slide 127: Bash scripting — Debugging
	Slide 128: Summary — More bash scripting

	Outro
	Slide 129: The end
	Slide 130: Some links
	Slide 131: More training

