
vscentrum.be

HPC@UAntwerp introduction
Ine Arts, Franky Backeljauw, Michele Pugno, Robin Verschoren

Version Fall 2025 – Part 1

Table of contents – Part 1

1. Introduction to the VSC
• UAntwerp Tier-2 infrastructure

• VSC Tier-1 infrastructure

• Characteristics of a HPC cluster

2. Connect to the cluster
• Types of cluster nodes

• Open OnDemand web portal

3. Transfer your files to the cluster
• File systems and user directories

• Block and file quota limits

• Globus data transfer platform

• Best practices for file storage

X. Using the command line

• Using SSH and SCP/SFTP

• Globus and OneDrive CLI interfaces

4. Select the software and
build your enviroment
• System, development and application software

• Software installation and support

• Selecting software using modules

• Toolchains & the CalcUA modules

• Searching, loading and unloading modules

• Best practices for using modules

5. Define and submit your jobs
• Running batch jobs

• Job submission workflow

• Job script example

• Important Slurm concepts

• Slurm resource requests

• Non-resource-related options

• The job environment

vscentrum.be

HPC@UAntwerp introduction
1 — Introduction to the VSC

CalcUA and VSC

➢ HPC core facility CalcUA

o provides HPC infrastructure & software for researchers

o offer training & support

o UAntwerp Tier-2 infrastructure (local)

➢ Vlaams Supercomputer Centrum (VSC)

o partnership between 5 University associations: Antwerp, Brussels, Ghent, Hasselt, Leuven

o FWO funded (Research Fund – Flanders)

o goal: make HPC available to all researchers in Flanders – academic and industrial

o provides central Tier-1 infrastructure

o other local Tier-2 infrastructures: VUB, UGent and KU Leuven / UHasselt

https://hpc.uantwerpen.be/
https://hpc.uantwerpen.be/
https://hpc.uantwerpen.be/
https://vscentrum.be/
https://vscentrum.be/
https://twitter.com/VSC_HPC
http://www.youtube.com/channel/UCLtcGAtZQUQEG99ZQpRLl1A
https://www.facebook.com/vschpc
http://www.linkedin.com/company/vschpc
https://bsky.app/profile/vschpc.bsky.social

The European HPC landscape

Tier-0
Europe

Tier-1
regional/
national

Tier-2
university

Tier-3
desktop

UAntwerp Tier-2 infrastructure

UAntwerp Tier-2 Infrastructure

storage system
shared, 730 TB

2 login nodes

152 compute nodes
• AMD Rome (Zen 2)
• 2x 32 cores

40 compute nodes
• AMD Milan (Zen 3)
• 2x 32 cores

1 GPU node
• 4x Nvidia A100

2 GPU nodes
• 2x AMD MI100

Vaughan

2 login nodes

152 compute nodes
• Intel Broadwell
• 2x 14 cores

2 GPU nodes
• 2x Nvidia P100

vector engine node
visualisation node

Leibniz

Login node

23 compute nodes
• Intel Skylake
• 2x 14 cores

Breniac

https://docs.vscentrum.be/antwerp/tier2_hardware.html
https://docs.vscentrum.be/antwerp/tier2_hardware.html
https://docs.vscentrum.be/antwerp/tier2_hardware.html

UAntwerp Tier-2 infrastructure

VSC Tier-1 infrastructure

VSC Tier-1 Infrastructure

2 Login nodes 384 compute nodes
• AMD Milan (Zen 3)
• 2x 64 cores

20 GPU nodes
• 4x Nvidia A100

384 compute nodes
• AMD Rome (Zen 2)
• 2x 64 cores

20 GPU nodes
• 4x Nvidia A100

Hortense (UGent)

Storage system
shared, 5.4 PB

PHASE 2

https://docs.vscentrum.be/hardware-tier1.html
https://docs.vscentrum.be/hardware-tier1.html
https://docs.vscentrum.be/hardware-tier1.html

VSC Tier-1 infrastructure

Hortense (UGent)

New VSC Tier-1 infrastructure — Operational in 2026

Flanders invests €8.6 million in the purchase of a new Flemish supercomputer

o VUB to host and manage the supercomputer at Research Park Zellik

4 visualisation nodes

New Tier-1 (VUB)

storage system
shared, 4.46 PB

21 GPU nodes
• 8x Nvidia H200 SXM5
• 2 x 96 cores
• 4 GB/core

16 high-memory nodes
• 2 x 96 cores
• 8 GB/core

56 high-core nodes
• AMD Turin (Zen 5c)
• 2 x 192 cores
• 2 GB/core

https://www.vub.be/en/news/vub-host-and-manage-supercomputer-research-park-zellik

Characteristics of a HPC cluster

➢ Shared infrastructure, used by multiple users simultaneously

o you need to request the appropriate resources

o you may have to wait a while before your computation starts

➢ Expensive infrastructure

o software efficiency matters!

➢ Built for parallel jobs

o no parallelism = no supercomputing

o not meant for running a single one-core job

➢ Remote computation model

o for batch computations rather than interactive applications

➢ Linux-based systems

o no Windows or macOS software

vscentrum.be

HPC@UAntwerp introduction
2 — Connect to the cluster

A typical workflow

1. Connect to the cluster
2. Transfer your files to the cluster
3. Select the software and build your environment
4. Define and submit your job
5. Wait while

➢ your job gets scheduled
➢ your job gets executed
➢ your job finishes

6. Move your results

Types of cluster nodes

➢ Computer cluster consists of nodes

o each node has specific task(s)

➢ Login nodes

o SSH access to the clusters

o edit & submit jobs

o small compilations

➢ New: Open OnDemand web portal

o web access to the clusters

➢ Compute nodes

o actual computations

Login section

Admin section

Compute section

Storage section

Open OnDemand web portal

➢ Provides a user interface to HPC clusters from within a web browser

o browse, create, transfer, view and/or edit files

o open a shell on one of the login nodes

o submit and monitor your jobs

o create job templates

➢ Use interactive applications

o interactive shell on the compute nodes, or desktop sessions

o programming environments — e.g., VS Code, JupyterLab, RStudio

➢ Log in with UAntwerp or VSC account — no SSH keys required!

Open OnDemand

Web portal access — New

https://portal.hpc.uantwerpen.be/
https://docs.vscentrum.be/compute/portal/ondemand/

Web portal access — https://portal.hpc.uantwerpen.be

https://portal.hpc.uantwerpen.be/

Web portal access — Connect to the cluster

Web portal access — Connect to the cluster

Summary — Access to a HPC cluster

➢ A HPC cluster is shared infrastructure with multiple
users

➢ It consists of many nodes with different functions: login
nodes, compute nodes, storage nodes, …

➢ You access the machine through the login nodes

o web portal: login node shell access

➢ You request a compute allocation for your
computations

o batch scripts (see 5 - define and submit your job)

o web portal: interactive shell

vscentrum.be

HPC@UAntwerp introduction
3 — Transfer your files to the cluster

A typical workflow

1. Connect to the cluster
2. Transfer your files to the cluster
3. Select the software and build your environment
4. Define and submit your job
5. Wait while

➢ your job gets scheduled
➢ your job gets executed
➢ your job finishes

6. Move your results

File systems and user directories

➢ /scratch/antwerpen/2xx/vsc2xxyy

o fast but temporary storage

o highest performance – for large files

o local only, no backup

➢ /data/antwerpen/2xx/vsc2xxyy

o long-term storage

o slower – for small files

o exported to other VSC sites

➢ /user/antwerpen/2xx/vsc2xxyy

o only for account configuration files

o exported to other VSC sites

$VSC_HOME

$VSC_SCRATCH

$VSC_DATA

Block and file quota limits

➢ Block quota limits the size of data

➢ File quota limits the number of files

➢ Default values (but you can request more)

o Show quota: at login or with the myquota command

➢ Note: on /scratch, the number of files corresponds to number of data chunk files

o 1 end-user created file can be spread over at most 8 data chunk files

o does not include the number of directories

File system Block quota File quota

/scratch 50 GB 100 k

/data 25 GB 100 k

/home 3 GB 20 k

Web portal access — Transfer your files

Globus — Data sharing platform

Globus web interface

➢ Web app to transfer large amounts of data between local computer and/or remote servers

o offers premium data sharing features, guest collections and connectors (e.g., for OneDrive)

o transfers will resume automatically, synchronization options available

o has a command-line interface as well as a Python SDK

➢ HPC@UAntwerp collection: VSC UAntwerpen Tier2 filesystems

o access to both user and shared group directories

o log in with UAntwerp or VSC account — note: active VSC account needed

➢ Transfer from/to local computer (laptop/desktop): Globus Connect Personal

➢ Transfer between remote servers: no local software needed!

Globus data sharing platform — Overviews & Concepts

https://app.globus.org/
https://app.globus.org/file-manager?origin_id=6a13242d-6506-4b3d-a49c-ac981b35ab7d
https://www.globus.org/globus-connect-personal
https://docs.vscentrum.be/globus/index.html
https://docs.globus.org/guides/overviews/

Globus — Data sharing platform

Globus — Data sharing platform

Globus — Data sharing platform

Globus — Transfer between remote servers

Globus — Transfer from/to local computer

Globus Connect Personal

➢ Create a local collection for your laptop/desktop

o easily and reliably move and share large amounts of data

o easily synchronize folders repeatedly — e.g., for back up

o interact with other Globus collections — e.g., VSC ...

o transfers will resume automatically

➢ Warning: be careful when setting accessible directories

o e.g., only allow access to dedicated directory for Globus

o by default, your home directory is selected, so remove it

https://www.globus.org/globus-connect-personal

Globus — Transfer from/to local computer

Best practices for file storage

➢ The cluster is not for long-term file storage

o move back your results to your laptop or server in your department

o backup exists for /user and /data – not for very volatile data

o old data on /scratch can be deleted if scratch fills up

➢ Cluster is optimised for parallel access to large files

o not for tons of small files (e.g., one per MPI process)

➢ Request more quota on /scratch

o block quota – without too much motivation

o file quota – you will have to motivate why you need more files

➢ Note: text files are good for summary output, or data for a spreadsheet,
but not for storing 1000x1000-matrices — use binary files for that!

Hands-on

➢ Copy some files between your laptop and CalcUA

o using the webportal as well as using the Globus web app

o copy them back to your laptop with both tools

o transfer a directory as well

➢ Download and install Globus Connect Personal

o login with vsc2xxxx@vscentrum.be

o choose a name for your collection — e.g. <name>-laptop

o good practice: configure it to use a dedicated subdirectory only — e.g. ~/Globus

o initiate a transfer from CalcUA to your laptop

▪ look at the options

Summary — Transfer your files to the cluster

➢ There are 3 user directories:

o $VSC_SCRATCH - data you need for calculations (large
files)

o $VSC_DATA - software or data you regularly need on
multiple VSC sites

o $VSC_HOME - config files only

➢ Regularly back up your files

o transfer them using Globus or scp/sftp

vscentrum.be

HPC@UAntwerp introduction
4 — Select the software and
5 — build your environment

A typical workflow

1. Connect to the cluster
2. Transfer your files to the cluster
3. Select the software and build your environment
4. Define and submit your job
5. Wait while

➢ your job gets scheduled
➢ your job gets executed
➢ your job finishes

6. Move your results

System software

➢ Operating system: Rocky Linux – currently, version 9.6

o Red Hat Enterprise Linux (RHEL) clone

o Installed on all CalcUA clusters: Vaughan, Leibniz and Breniac

▪ All clusters are kept in sync as much as possible

➢ Resource management and job scheduler: Slurm

➢ Software build and installation framework: EasyBuild

➢ Environment modules system: Lmod

https://rockylinux.org/
https://slurm.schedmd.com/
https://easybuild.io/
https://lmod.readthedocs.io/

Development software

➢ C/C++/Fortran compilers

o Intel oneAPI, AOCC, GCC

o with OpenMP support

➢ Message passing libraries

o Intel MPI, Open MPI

➢ Mathematical libraries

o Intel MKL, OpenBLAS, FFTW, MUMPS, GSL, …

➢ File formats and data partitioning

o HDF5, NetCDF, Metis, ...

➢ Scripting and programming languages

o Python, Perl, R, …

Application software

➢ Quantum Chemistry / Computational Chemistry / Electronic Structure Calculations

o ABINIT, CP2K, QuantumESPRESSO, VASP, Gaussian, ORCA, NWChem, OpenMX, Siesta

➢ Molecular Dynamics (MD) and Biomolecular Simulation

o GROMACS, NAMD, AMBER, LAMMPS, CHARMM, Desmond, Tinker, DL_POLY

➢ Computational Fluid Dynamics (CFD) – TELEMAC, OpenFOAM

➢ Optimization and Operations Research – Gurobi, CPLEX

➢ Bioinformatics / Computational Biology – BLAST, Bowtie, Guppy, MAFFT, HMMER, Nextflow

➢ Data Analysis / Statistical Computing / Scientific Computing – MATLAB, R, Python (SciPy/NumPy), Julia

➢ Machine Learning / AI / Deep Learning Frameworks – TensorFlow, PyTorch, Scikit-learn, …

➢ … — not limited to the above list

Licensed software

➢ VSC or campus-wide license

o e.g.: MATLAB, Mathematica, Maple, …

o restrictions may apply if you don’t work at UAntwerp

▪ for external institutions (ITG, VITO) and companies

➢ Other restricted licenses

o e.g.: VASP, Gaussian, …

▪ typically paid for by research groups (or individual users)

▪ sometimes just other license restrictions that must be respected

o access controlled via group membership

▪ talk to the owner of the license first

▪ request group membership via the VSC account page (“New/Join group”)

▪ the group moderator will grant or refuse access

https://account.vscentrum.be/

Software installation and support

➢ Installed in /apps/antwerpen

o preferably built and installed using EasyBuild

o often multiple versions of the same package

➢ Additional software – installed on demand

o system requirements should be met – note: no Windows software

o provide building instructions (no rpm/deb packages)

▪ is the software supported by EasyBuild?

o commercial software must have a cluster-use license

o assist in testing – we can't have expertise in all domains

➢ Limited (compilation) support

o best effort, no code fixing

o many packages are tested with only one compiler

https://docs.easybuild.io/version-specific/supported-software/

Selecting software

➢ Using modules

o dynamic software management

o no version conflicts

o automatically loads required dependencies

o sets environment variables

▪ generic – $PATH, $LD_LIBRARY_PATH, ...

▪ application-specific – $PYTHONPATH, …

▪ EasyBuild related – $EBROOT…

➢ Module naming scheme

 <name of software>/<version>[-<toolchain info>][-<additional info>]

▪ toolchain = bundle of compiler + compatible MPI and math libraries

▪ additional information: used to distinguish between versions

<name of software>/<version>[-<toolchain info>][-<additional info>]

Toolchains

➢ Toolchain = bundle of compiler + compatible MPI and math libraries

o intel – Intel & GNU compilers, Intel MPI and MKL libraries

o foss – GNU compilers, Open MPI, OpenBLAS, FFTW, ...

➢ Subtoolchains — not including MPI or mathematical libraries

o gfbf = GCC + FlexiBLAS + FFTW

o GCC = GCCcore + binutils

o GCCcore — GNU compilers only

➢ System toolchain – system compilers (installed as part of the OS)

➢ Refreshed yearly (actually, twice per year) → 2025a, 2024b, 2024a, 2023b, 2023a

o offers more recent versions of the components (and of the software built with it)

Overview of common toolchains (and their component versions)

https://docs.easybuild.io/common-toolchains/#common_toolchains_overview

CalcUA modules

➢ Used to group software installed in the same time frame

➢ Currently available versions of the toolchain compiler modules

▪ 2025a, 2024a, 2023a: mostly foss, but also intel

➢ Good practice: always load a calcua module first!

CalcUA module Software collection

calcua/2025a version 2025a of the toolchain compiler modules
+ software built with them

calcua/system software built with system compilers

calcua/x86_64 software installed from binaries (x86_64)

calcua/all all currently available software (all of the above)

$ module av openfoam Show/search available modules
• depends on currently loaded calcua module
• case-insensitive

$ module spider openfoam Show/search all installed modules
• also includes extensions (e.g., Python packages, …)

$ module spider
 openfoam/11-foss-2023a

Display additional information about a specific module
• shows which calcua modules provide it

$ module load
 OpenFOAM/11-foss-2023a

Load a specific version of a module
• advise: explicitly specify name & version
• case-sensitive

$ module list List all loaded modules (in the current session)

Using modules

➢ One command for searching, loading and unloading modules: module

$ module purge Unload all modules – start from a clean environment
• removal of a sticky module using --force

$ module load calcua/2023a Load appropriate calcua module first
• makes the modules available (here, from 2023a)

$ module load
 OpenFOAM/11-foss-2023a

Load the modules you want to use
• advise: explicitly specify name & version

Best practices for using modules

➢ Advice: do not load modules in your .bashrc

o consider using module collections instead – subcommands: save, savelist, describe, restore

Module system basics

User’s Tour of the Module Command

https://lmod.readthedocs.io/en/latest/010_user.html#user-collections
https://docs.vscentrum.be/software/module_system_basics.html
https://lmod.readthedocs.io/en/latest/010_user.html#user-s-tour-of-the-module-command

Hands-on

➢ Which software are you going to use?

o can you find which versions we have?

o if we do not have it, is it supported by EasyBuild?

▪ yes → let us know

▪ no → look for instructions & let us know

➢ Use our advice to load the modules

o start from a clean environment

o load an appropriate calcua module

o load the module you want to use

➢ Try out saving and restoring a module collection

Summary — Select software & build your environment

➢ Installed software is isolated from the rest of the system
using modules

$ module load R/4.3.2-gfbf-2023a

➢ The modules are grouped in different CalcUA modules

o calcua/all is loaded by default

➢ You can gain access to licensed software by requesting
group membership in the VSC account page

➢ You can request additional software

vscentrum.be

HPC@UAntwerp introduction
5 — Define and submit your job

A typical workflow

1. Connect to the cluster
2. Transfer your files to the clusters
3. Select the software and build your environment
4. Define and submit your job
5. Wait while

➢ your job gets scheduled
➢ your job gets executed
➢ your job finishes

6. Move your results

Running batch jobs

➢ Running computations → batch jobs

o script with resource specifications

➢ Submitted to a queueing system

o managed by a resource manager

➢ Next job selected by a scheduler

o in a fair way – fair share

o based on available resources

o & scheduling policies

➢ Remember:

o a cluster is a shared infrastructure

o jobs might not start immediately

Connected here

Want to compute
here (run jobs)

Other users will
also have jobs
running here

Job queue

SLURM
scheduler

Job submission workflow – Behind the scenes

#!/bin/bash
#SBATCH -o stdout.%j
#SBATCH -e stderr.%j
module purge
module load calcua/all
module load MATLAB

matlab -r fibo

Submit jobs
Query the cluster

Scheduler plugin

Resource
manager (server)

Partition
manager

Scheduling policy

Resource
manager
(client)

Resource
manager
(client)

Resource
manager
(client)

Resource
manager
(client)Users

Job script

Job script example

➢ Start with shebang line

➢ Request resources + give instructions

▪ first block

▪ start with #SBATCH
• these look like comments to bash

➢ Load relevant modules

o build a suitable job environment

➢ Actual computation commands

#!/bin/bash

#SBATCH --ntasks=1 --cpus-per-task=1
#SBATCH --time=0:10:00
#SBATCH --account ap_course_hpc_intro
#SBATCH --partition=zen2
#SBATCH --output stdout.%j
#SBATCH --error stderr.%j

module purge
module load calcua/2024a
module load Python/3.12.3-GCCcore-13.3.0

python pi.py

Important Slurm concepts

Node Compute node

Core Physical core (in physical cpu)

CPU Virtual core – hardware thread
• on the CalcUA clusters, hyperthreading is disabled → CPU = Core

Partition Group of nodes with job limits and access controls – aka job queue

Job Submitted job script — resource allocation request

Job step Set of (possibly parallel) tasks within a job
• the job script itself is a special step – the batch job step
• e.g., a MPI application typically runs in its own job step

Task Corresponds to a (single) Linux process, executed in a job step
• a single task can not use more CPUs than available in a single node
• e.g., for a MPI application, each rank (MPI process) is a task

but a shared memory program is a single task

Slurm resource requests – Overview

Long option Short option Description

--ntasks=<number> -n <number> Number of tasks

--cpus-per-task=<ncpus> -c <ncpus> Number of CPUs per task

--mem-per-cpu=<amount><unit> Amount of memory per CPU

--time=<time> -t <time> Time limit (wall time)

--account=<ap_proj> -A <ap_proj> Project account to use

--partition=<pname> -p <pname> Partition to submit to

--switches=<count> Max count of leaf switches

--job-name=<jobname> -J <jobname> Name of the job

--output=<outfile> -o <outfile> Redirect stdout

--error=<errfile> -e <errfile> Redirect stderr

--mail-type=<type> Event notification (start, end, …)

--mail-user=<email> Email address

Slurm resource requests – Tasks & CPUs per task

➢ Specify number of (parallel) tasks and CPUs (cores) per task

o Task = single process (runs within a single node)

o CPUs per task → number of computational threads for a task

➢ Note: CPUs per task can never exceed the number of cores per node

➢ If not set, default = 1 task & 1 CPU

Long option Short option Job environment variable Description

--ntasks=<number> -n <number> SLURM_NTASKS (if set) Number of tasks

--cpus-per-task=<ncpus> -c <ncpus> SLURM_CPUS_PER_TASK (if set) Number of CPUs per task

Slurm resource requests – Memory per CPU

➢ Memory per CPU – not per task

o unit = kilobytes (k), megabytes (m) or gigabytes (g)

o amount = integer — 3.75g is invalid, use 3840m instead

➢ If not set, default = maximum available memory per requested CPU

o depends on node or partition setting

➢ Note: if requesting more than maximum available per CPU → number of CPUs will be increased

➢ Note: on CalcUA clusters, per node 16 GB is reserved for the OS and file system buffers
o e.g., on a Vaughan compute node with 256 GB of (installed) memory, the default value is 3840m

– calculated from (256 GB - 16 GB) / 64 CPUs = 240 / 64 = 3.75GB = 3840 MB (per core)

Long option Job environment variable Description

--mem-per-cpu=<amount><unit> SLURM_MEM_PER_CPU (in megabytes) Amount of memory per CPU

Slurm resource requests – Wall time

➢ Formats : mm | mm:ss | hh:mm:ss | d-hh | d-hh:mm | d-hh:mm:ss

o d = days, hh = hours, mm = minutes, ss = seconds

➢ Maximum time limit on the CalcUA clusters

o compute nodes: 3 days (Vaughan, Leibniz), 7 days (Breniac)

o GPU nodes: 1 day

➢ Wall time exceeded → job will be killed

➢ Wall time > maximum → job will not start

➢ If not set, default = 1 hour

Long option Short option Job environment variable Description

--time=<time> -t <time> SLURM_JOB_START_TIME
SLURM_JOB_END_TIME

Time limit = wall time

Slurm resource requests – Project account

➢ Required to specify a project account at CalcUA clusters

o accounting for both compute (jobs) and storage (files)

o ask your supervisor or project account manager to get access

o use an appropriate account according to the project

➢ Show accounts you have access to:

o all project accounts start with ap_

o during this course → ap_course_hpc_intro

Accounting @ CalcUA (slides & video)

Long option Short option Job environment variable Description

--account=<ap_proj> -A <ap_proj> SLURM_JOB_ACCOUNT Project account to use

myprojectaccounts

https://www.uantwerpen.be/en/research-facilities/calcua/support/accounting/

Slurm resource requests – Partitions

➢ Partition = group of nodes

o access controls and scheduling policies — e.g.: restrict access to a limited group of users

o job defaults & resource limits – e.g.: def/max mem per CPU, max time limit, def CPUS per GPU

➢ If not set, use the default partition defined per cluster

o note: job does not get automatically assigned to the optimal partition

UAntwerp Tier-2 Infrastructure – available partitions per cluster + resource limits

Long option Short option Job environment variable Description

--partition=<pname> -p <pname> SLURM_JOB_PARTITION Partition to submit to

https://docs.vscentrum.be/antwerp/tier2_hardware.html
https://docs.vscentrum.be/antwerp/tier2_hardware.html
https://docs.vscentrum.be/antwerp/tier2_hardware.html

CalcUA clusters – Partitions and node information

Cluster Partition # Specifications CPU – GPU Mem per CPU Max WT

Vaughan zen2

zen3

zen3_512

152

28

12

AMD Zen 2, 256 GB RAM

AMD Zen 3, 256 GB RAM

AMD Zen 3, 512 GB RAM

64 CPU

64 CPU

64 CPU

3.75 GiB – 3840m

3.75 GiB – 3840m

7.75 GiB – 7936m

3 days

ampere_gpu

arcturus_gpu

1

2

Zen 2, NVIDIA Ampere GPUs

Zen 2, AMD Arcturus GPUs

4 GPU – 64 CPU

2 GPU – 64 CPU

3.75 GiB – 3840m

3.75 GiB – 3840m

1 day

Leibniz broadwell

broadwell_256

144

8

Intel Broadwell, 128 GB RAM

Intel Broadwell, 256 GB RAM

28 CPU

28 CPU

4 GiB – 4096m

8,5 GiB – 8704m

3 days

pascal_gpu 2 Broadwell, NVIDIA Pascal GPUs 2 GPU – 28 CPU 4 GiB – 4096m 1 day

Breniac skylake 23 Intel Skylake, 192 GB RAM 28 CPU 6.29 GiB – 6436m 7 days

➢ bold = default partition for the corresponding cluster

Hands-on

➢ And now it’s time to run your first job – finally!

o start by cloning our repository for this course

git clone https://github.com/hpcuantwerpen/intro-hpc

➢ Create a small job script which

▪ uses the correct project account – for this course

▪ needs 1 core, has a wall time of 10 minutes, and will run on the zen2 partition

▪ loads the module vsc-tutorial/202203-intel-2024a – according to our advice

▪ executes a “hello world” script by using the command: serial_hello

➢ Submit your first job

o submit the job – use sbatch → you get a job id

o be patient, the job will start soon – check the job status using squeue

o look at what happens – e.g.: which files are generated?

https://github.com/hpcuantwerpen/intro-hpc
https://github.com/hpcuantwerpen/intro-hpc
https://github.com/hpcuantwerpen/intro-hpc

Slurm resource requests – Faster communication

➢ Node communication through network switches

o Nodes are grouped on edge switches which are connected by top switches

▪ hence communication/traffic between two nodes passes through either 1 or 3 switches

➢ Some programs are latency-sensitive – e.g.: GROMACS

o will run much better on nodes which are all connected to a single (edge) switch

➢ Note: using this option might increase your waiting time

Long option Description

--switches=1 Request all nodes to be connected to a single switch

Slurm resource requests – Exclusive node access

➢ Nodes are shared resources

o if you don’t request all cores, remaining cores might be used by another user

o if you submit multiple jobs, those might end up on the same or on different nodes

➢ Sometimes it is better to request exclusive access to the compute nodes

o because jobs influence each other (L3 cache, memory bandwidth, communication channels, ….)

o prevents sharing of allocated nodes with other jobs – even from the same user

➢ Be aware, you will be charged for a full node

Long option Description

--exclusive Request exclusive access to the node for the job

Slurm resource requests – Number of nodes

➢ For each task, all of the CPUs for that task are allocated on a single compute node

o but different (parallel) tasks might end up on either the same or different compute nodes

o depends on what is already running on these nodes — from you or another user

➢ Advice: bundle tasks from the same job on as few nodes as possible

o to make the communication latency between tasks as small as possible

➢ Specify the number of nodes the job may use

o tell the scheduler how many nodes it needs to allocate for the job

o note: also possible to specify a min/max number of nodes using --nodes=<min>-<max>

Long option Short option Job environment variable Description

--nodes=<number> -N <number> SLURM_JOB_NUM_NODES Number of nodes

Non-resource-related options – Job name

➢ Assign a name to your job – the job name

o job name can be used when defining the output and error files

➢ If not given, the default name = name of the batch job script

o or “sbatch” if read from standard input

Long option Short option Job environment variable Description

--job-name=<jobname> -J <jobname> SLURM_JOB_NAME Name of the job

Non-resource-related options – Redirect stdout / stderr

➢ By default = redirect both stdout and stderr → slurm-<jobid>.out

o that file is present as soon as the job starts and produces output

o but delays may occur due to buffering or filesystem caches

➢ If only --output is given → redirect both stdout and stderr to the same file

➢ Possible to use filename patterns to define the filename

o examples: %x for the job name, %j for job id, …

Filename patterns

Long option Short option Description

--output=<outfile> -o <outfile> Redirect stdout

--error=<errfile> -e <errfile> Redirect stderr

https://slurm.schedmd.com/sbatch.html#SECTION_FILENAME-PATTERN

Non-resource-related options – Mail notifications

➢ The scheduler can send you a mail when a job begins (starts), ends or fails (gets aborted)

o type = BEGIN | END | FAIL | ALL | TIME_LIMIT_xx

➢ default email address = linked to your VSC-account

Long option Description

--mail-type=<type> Event notification (start, end, …)

--mail-user=<email> Email address

The job runtime environment

➢ On UAntwerp clusters, we only set a minimal environment for jobs by default

o equivalent to exporting only these environment variables

--export=HOME,USER,TERM,PATH=/bin:/sbin

o hence you need to (re)build a suitable environment for your job – using modules

➢ Other available environment variables include

o VSC_* — for user directories, but also for cluster/os/architecture

o EB* + module specific variables – defined by loading modules

o SLURM_* variables – set by Slurm (next slide)

The job environment

--export=HOME,USER,TERM,PATH=/bin:/sbin

https://docs.vscentrum.be/jobs/job_submission.html#the-job-environment

The job runtime environment

➢ Slurm defines several variables when a job is started

o these can be used when calling programs – e.g.: to pass the number of available CPUs

o some are only present if explicitly set

Output environment variables

Environment variable Explanation

SLURM_SUBMIT_DIR The directory from which sbatch was invoked

SLURM_JOB_ACCOUNT Account name selected for the job

SLURM_JOB_NUM_NODES Total number of nodes for the job

SLURM_JOB_NODELIST List of nodes allocated to the job

SLURM_JOB_CPUS_PER_NODE CPUs available to the job on this node

SLURM_TASKS_PER_NODE Number of tasks to run on this node

https://slurm.schedmd.com/sbatch.html#SECTION_OUTPUT-ENVIRONMENT-VARIABLES

Summary — Define & submit your job

➢ Computations (batch jobs) are scheduled by Slurm to
run on the compute nodes

➢ In your jobscript, you request the appropriate
resources:

o number of cores/ tasks,

o memory,

o partition,

o project account,

o wall time, …

#!/bin/bash
#SBATCH --ntasks=1 --cpus-per-task=1
#SBATCH --time=0:10:00
#SBATCH --account ap_course_hpc_intro
#SBATCH --output stdout.%j
#SBATCH --error stderr.%j
module purge
module load calcua/2024a
module load R/4.3.2-gfbf-2023a
...

jobscript.sh

vscentrum.be

HPC@UAntwerp introduction
X — Using the command line

SSH access — Required software

➢ Windows

o SSH client included in latest versions of Windows 10 or above

▪ check if present in Windows Settings > System > Optional features

o optional: use Windows Subsystem for Linux (WSL)

▪ install and use a Linux distribution of your choice

▪ now also supports running Linux GUI apps (X11 and Wayland)

o optional: use Windows Terminal (available via the Microsoft Store)

▪ choose between Command Prompt, PowerShell, and bash (via WSL)

o MobaXterm combines a SSH/SFTP client, X server and VNC server in one

o PuTTY used to be a popular GUI SSH client

https://learn.microsoft.com/en-us/windows/wsl/
https://learn.microsoft.com/en-us/windows/terminal/
https://mobaxterm.mobatek.net/
https://mobaxterm.mobatek.net/
https://www.putty.org/
https://www.putty.org/

SSH access — Required software

➢ macOS

o SSH client included

o Terminal app (built-in) or iTerm2

o for graphical applications (X11), use XQuartz

o optional: Homebrew

▪ allows to install Linux commands

▪ can also install applications

o remark: macOS is based on BSD (Unix)

▪ (BSD variants of) commands may behave differently

➢ Linux

➢ SSH client included

➢ choice of terminal and shell

➢ supports graphical applications

https://www.iterm2.com/
https://www.xquartz.org/
https://brew.sh/

SSH access — Public/private key pairs

➢ Communication with the cluster happens through SSH (Secure SHell)

o Protocol to log in to a remote computer, transfer files (SFTP), …

o uses public/private key pairs

Keep safe!

Upload to VSC
account page

/home/<username>/.ssh/id_rsa.pub

public key

/home/<username>/.ssh/id_rsa

private key

• passphrase
• don’t share

https://account.vscentrum.be/
https://account.vscentrum.be/

SSH access — Public/private key pairs

Create a public/private key pair

o create RSA key pair (at least 4096 bits)

$ ssh-keygen –t rsa –b 4096

o note: on Windows, when using PuTTYgen key generator

▪ use PuTTY key format 2 in latest version

▪ Convert the public key to OpenSSH format

Upload public key → VSC account page

o web-based registration procedure

$ ssh-keygen –t rsa –b 4096

https://docs.vscentrum.be/access/generating_keys.html#create-a-public-private-key-pair
https://docs.vscentrum.be/access/generating_keys.html#upload-public-key-to-vsc-account-page
https://account.vscentrum.be/

SSH access — Connect to the cluster

➢ You need:

o VSC account name: vsc2xxxx

o Hostname of a login node

o Private/public key pair
(upload public key once)

➢ Restricted public access

o outside of Belgium: use VPN

▪ vpn.uantwerpen.be

▪ Instructions on Pintra (staff)
 My Subsites > Department ICT
 > ICT Guide > Remote working – VPN

or Studentportal (students)
 Dashboard > ICT > Network > VPN

Cluster Hostname of login node

Vaughan login-vaughan.hpc.uantwerpen.be

Vaughan
(indiv. login nodes)

login1-vaughan.hpc.uantwerpen.be
login2-vaughan.hpc.uantwerpen.be

Leibniz login-leibniz.hpc.uantwerpen.be
login.hpc.uantwerpen.be

Leibniz
(indiv. login nodes)

login1-leibniz.hpc.uantwerpen.be
login2-leibniz.hpc.uantwerpen.be

Leibniz (vis. node) viz1-leibniz.hpc.uantwerpen.be

Breniac login-breniac.hpc.uantwerpen.be

https://vpn.uantwerpen.be/
https://vpn.uantwerpen.be/

SSH access — Connect to the cluster

➢ Login via secure shell

o if your private key has the standard filename (~/.ssh/id_rsa)

 $ ssh vsc2xxxx@login.hpc.uantwerpen.be

o otherwise, explicitly specify the filename

 $ ssh –i ~/.ssh/id_rsa_vsc vsc2xxxx@login.hpc.uantwerpen.be

Text-mode access using OpenSSH

$ ssh vsc2xxxx@login.hpc.uantwerpen.be

$ ssh –i ~/.ssh/id_rsa_vsc vsc2xxxx@login.hpc.uantwerpen.be

mailto:vsc2xxxx@login.hpc.uantwerpen.be
mailto:vsc2xxxx@login.hpc.uantwerpen.be
https://docs.vscentrum.be/access/text_mode_access_using_openssh.html
https://docs.vscentrum.be/access/text_mode_access_using_openssh.html
https://docs.vscentrum.be/access/text_mode_access_using_openssh.html

SSH access — Using an SSH configuration file

➢ for all hosts

o (try to) keep the connection alive

➢ when connecting as user vsc2xxxx

o use this private key

➢ create a shorthand “calcua”

o connect as user vsc2xxxx

o use login node login.hpc.uantwerpen.be

o use agent forwarding (for subsequent ssh calls (-A))

o use X11 forwarding (for visualisation (-X))

Host *
 ServerAliveInterval 60

Match final User vsc2xxxx
 IdentityFile ~/.ssh/id_rsa_vsc

Host calcua

 User vsc2xxxx
 HostName login.hpc.uantwerpen.be

 ForwardAgent yes
 ForwardX11 yes

➢ Put this file in ~/.ssh/config and then you can connect using: ssh calcua

SSH config

ssh calcua

https://docs.vscentrum.be/access/ssh_config.html

SCP/SFTP access — Transfer your files

➢ For simple file transfers: secure copy (SCP)

o copy from your local computer to the cluster

$ scp file.ext vsc2xxxx@login.hpc.uantwerpen.be:

o copy from the cluster to your local computer

$ scp vsc2xxxx@login.hpc.uantwerpen.be:file.ext .

➢ Need more features (e.g.: file browsing, resuming transfers, …): use SFTP

o command-line: sftp

o any graphical sftp file manager of your choice

➢ For large file transfers, we recommend Globus

Data transfer on external computers

$ scp file.ext vsc2xxxx@login.hpc.uantwerpen.be:

$ scp vsc2xxxx@login.hpc.uantwerpen.be:file.ext .

https://docs.vscentrum.be/data/transfer/external_computer.html

Hands-on

➢ Install the required software

➢ Create your VSC account

o create a public/private key pair

o upload your public key

➢ Login to a CalcUA cluster via ssh

➢ Copy a file from CalcUA to your computer using scp

➢ Create a SSH configuration file

o feel free to choose your own shorthand name

o login using the shorthand name

Summary — SSH access

➢ You can connect directly to the cluster's login
nodes, not the compute nodes

➢ To connect using ssh, you need:

o your VSC account name

o the hostname of the login node

o your private key

➢ Your private key is private, keep it safe!

vsc2xxxx

login.hpc.
uantwerpen.be

ssh

Globus – Command line interface

Setup

➢ $ module load Globus-CLI/3.34.0-GCCcore-13.3.0

➢ $ globus login

o paste url in browser, follow instructions & copy code back to terminal

➢ $ globus endpoint search "VSC UAntwerpen Tier2 filesystems"

➢ $ Tier2Antwerp=6a13242d-6506-4b3d-a49c-ac981b35ab7d

o you can add these as environment variables to ~/.bashrc

➢ $ globus ls $Tier2Antwerp

o first time access error: “Missing required data_access consent”

o $ globus session consent "urn:globus:auth:scope:transfer.api.globus.org:all
[*https://auth.globus.org/scopes/<COLLECTION_ID>/data_access]"

Globus – Command line interface

Transfer

➢ $ module load Globus-CLI/3.34.0-GCCcore-13.3.0

➢ $ globus endpoint search --filter-scope my-endpoints <name>

o $ Tier2Antwerp=6a13242d-6506-4b3d-a49c-ac981b35ab7d

o $ MyPC=…

➢ $ globus ls $Tier2Antwerp:/scratch/antwerpen/xxx/vsc2xxyy/

➢ $ globus transfer $Tier2Antwerp:path/to/data/on/uantwerp/tier2 \
$MyPC:path/to/data/on/your/pc/ --label "test_transfer”

Globus Command Line Interface (CLI) — Reference

https://docs.vscentrum.be/globus/cli.html
https://docs.globus.org/cli/reference/

OneDrive – Command line interface

OneDrive Client for Linux

o alternative: UAntwerp OneDrive collection for Globus — not yet available

Setup

➢ $ onedrive

o copy url in browser, follow instructions, copy response url back to terminal

o use Chrome if you encounter issues

➢ Configure a directory to be synchronized:

o $ mkdir -p $VSC_DATA/onedrive/calcua-sync

o $ config=~/.config/onedrive/config

o $ echo sync_dir = \"$VSC_DATA/onedrive\" > $config # set onedrive directory

o $ echo 'skip_symlinks = "true"' >> $config # do not sync symlinks

o $ echo 'skip_dotfiles = "true"' >> $config # do not sync hidden files

https://abraunegg.github.io/

OneDrive – Command line interface

➢ You don't want to sync your entire OneDrive

~/.config/onedrive/sync_list defines which files and directories to sync

o $ echo calcua-sync >> ~/.config/onedrive/sync_list

o supports excluding and/or including files and/or directories (see example)

➢ After changing sync_list:

o $ onedrive --resync --sync --verbose --dry-run

Transfer

➢ Perform a synchronization:

o $ onedrive --sync --verbose

Using the client

exclusions should be listed first
!/Documents/secret/ # exclude this directory, otherwise
included in next line
/Documents/ # include Documents folder in OneDrive root
Results/ # include Results folder anywhere in OneDrive
Reports/*.pdf # include all .pdf files in a Reports
folder anywhere in OneDrive

~/.config/onedrive/sync_list

https://github.com/abraunegg/onedrive/blob/master/docs/usage.md

Part 2 — Sneak preview

➢ In Part 1, you learned how to

o connect to the cluster and transfer your files

o use modules and setup your job environment

o properly specify your resource requests

o write and submit your job scripts

➢ In Part 2, you will learn

o more about the Slurm commands and how to use them

o the different types of multi-core parallel jobs

o how to organize your job workflows

o running large number of jobs

o and some best practices

vscentrum.be

HPC@UAntwerp introduction
Ine Arts, Franky Backeljauw, Michele Pugno, Robin Verschoren

Version Fall 2025 — Part 2

Table of contents – Part 2

6. Slurm commands
• sbatch : submit a batch script

• squeue : check the status of your jobs

• scancel : cancel a job

• srun : run parallel tasks

• sstat and sacct : information about jobs

• sinfo : get an overview of the cluster and partitions

• scontrol : view Slurm configuration and state

• salloc : create a resource allocation

7. Multi-core parallel jobs
• Why parallel computing?

• Types of parallel computing

• Running a shared memory job – Multithreading (OpenMP)

• Running a distributed memory job – MPI

• Running a hybrid OpenMP/MPI job

• Job monitoring

8. Multi-job submission
• Running a large batch of small jobs

• Job arrays and atools

9. Installing your own software
• Installing your own software and packages

• Using Apptainer containers

10. Interactive applications
• Running interactive applications on the compute nodes

• Web portal apps — Some examples

• Using the visualisation node

X. Extra topics
• Organizing job workflows

Final notes

vscentrum.be

HPC@UAntwerp introduction
6 — Slurm commands

Slurm commands – Overview

Command Description

sbatch Submit a batch script

squeue Check the status of your jobs

scancel Cancel a job

srun Run parallel tasks – start an interactive job

sstat Information about running jobs

sacct Information about (terminated) jobs

sinfo Get an overview of the cluster, partitions and nodes

scontrol View current Slurm configuration and state

salloc Create a resource allocation

sbatch — Submit a batch script

➢ sbatch <sbatch arguments> jobscript <arguments of the job script>

o does not wait for the job to start or end

o can also read the job script from stdin instead

➢ What sbatch does:

o submits the job script to the selected partition (aka job queue)

o returns Submitted batch job <jobid>

➢ What Slurm does – behind the scenes

o creates an allocation when resources become available

o creates batch job step in which it runs the batch script

sbatch <sbatch arguments> jobscript <arguments of the job script>

sbatch — Submit a batch script

➢ To pass resource (and non-resource) requests

o add #SBATCH comment lines at the beginning of your job scripts

o use environment variables beginning with SBATCH_

▪ followed by the name of the matching command line option

▪ can be useful if you have access to only one project account

▪ overrules #SBATCH lines

o on the command line as options to sbatch

▪ overrules both #SBATCH and SBATCH_*

sbatch manual page

https://slurm.schedmd.com/sbatch.html

squeue — Check the status of your jobs

➢ squeue checks the status of your own jobs in the job queue

$ squeue
JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)
26170 zen2 bash vsc20259 R 6:04 1 r1c02cn3.vaughan

o ST = state of the job

squeue manual page – job state codes

ST Explanation ST Explanation

PD Pending – waiting for resources F Failed job – non-zero exit code

CF Configuring – nodes becoming ready TO Timeout – wall time exceeded

R Running OOM Job experienced out-of-memory error

CD Successful completion – exit code zero NF Job terminated due to node failure

squeue

https://slurm.schedmd.com/squeue.html
https://slurm.schedmd.com/squeue.html#SECTION_JOB-STATE-CODES

squeue — Check the status of your jobs

➢ squeue checks the status of your own jobs in the job queue

$ squeue
JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)
26170 zen2 bash vsc20259 R 6:04 1 r1c02cn3.vaughan

o NODELIST(REASON) = reason why a job is waiting for execution

job reason codes

NODELIST(REASON) Explanation

Priority There are one or more higher priority jobs in the partition

QOSMaxNodePerUserLimit The limit on the maximum number of nodes per user is exceeded

AssocMaxJobsLimit The limit on the number of running jobs for each user has been reached

JobHeldAdmin The job is held by an administrator

squeue

https://slurm.schedmd.com/squeue.html#SECTION_JOB-REASON-CODES

scancel — Cancel a job

➢ scancel <jobid> cancels a single job + all its job steps (if already running)

o cancel a specific job step: scancel <jobid>.<stepid>
▪ e.g., if you suspect a job step hangs, but you still want to execute

the remainder of the job script to clean up and move results

o cancel a (sub)job of a job array: scancel <jobid>_<arrayid>

➢ Some other possibilities

o --state <state> or -t <state> : cancel only jobs with given state

▪ <state> = pending, running, or suspended

o --partition <part> or -p <part> : cancel only jobs in given partition

scancel manual page

scancel <jobid>

https://slurm.schedmd.com/scancel.html

srun — Run parallel tasks

➢ srun “Swiss Army Knife” to create & manage (parallel) tasks within a job

o in Slurm terminology: it creates a job step that can run one or more parallel tasks

o run multiple jobs steps simultaneously, each using a part of the allocated resources

o the better way of starting MPI programs – preferred over mpirun and mpiexec

▪ usage will be shown through examples

o run a command on all allocated nodes of a running job:

srun --jobid <jobid> --overlap <command>

o run a shell on the first allocated node of a running job:

srun --jobid <jobid> --interactive --pty bash

o alternatively, use ssh to log into any allocated node of a running job

▪ but only possible as long as the job is running

srun manual page

srun

srun --jobid <jobid> --overlap <command>

srun --jobid <jobid> --interactive --pty bash

https://slurm.schedmd.com/srun.html

sstat — Information about running jobs

➢ sstat –j <jobid>[.<stepid>] shows real-time information about a job or job step

o it is possible to specify a subset of fields to display using the -o, --format or --fields option.

➢ Get an idea of the load balancing (for an MPI job)

$ sstat -a -j 12345 -o JobID,MinCPU,AveCPU
JobCPU MinCPU AveCPU

------------ ---------- ----------
12345.extern 00:00.000 00:00.000
12345.batch 00:00.000 00:00.000
12345.0 22:54:20 23:03:50

o shows the minimum and average amount of consumed CPU time for all job steps
▪ interpretation: here, step 0 is an MPI job, and we see that the minimum CPU time consumed by the task

is close to the average, which indicates that the job is running properly and that the load balance is ok

sstat -j <jobid>[.<stepid>]

sstat — Information about running jobs

➢ Checking memory usage

$ sstat -a -j 12345 -o JobID,MaxRSS,MaxRSSTask,MaxRSSNode
JobID MaxRSS MaxRSSTask MaxRSSNode

------------ ---------- ---------- ----------
12345.extern
12345.batch 4768K 0 r1c06cn3.+
12345.0 708492K 16 r1c06cn3.+

o provides a snapshot of the job's real memory usage – RSS = Resident Set Size

▪ gives an insight into how much of the requested memory the job is actively using
▪ interpretation: the largest process in the MPI job step is consuming roughly 700MB

at this moment, and it is task 16 and running on compute node r1c06cn3.vaughan

sstat manual page

https://slurm.schedmd.com/sstat.html

sacct — Information about (terminated) jobs

➢ sacct shows information kept in the job accounting database

o e.g.: job start/end times, resource usage, job status, user/account details, …

o useful for monitoring, billing, performance analysis, …

o note: for running jobs the information may enter only with a delay

$ sacct -j 12345
JobID JobName Partition Account AllocCPUS State ExitCode

------------ ---------- ---------- ---------- ---------- ---------- --------
12345 NAMD-S-00+ zen2 antwerpen+ 64 COMPLETED 0:0
12345.batch batch antwerpen+ 64 COMPLETED 0:0
12345.extern extern antwerpen+ 64 COMPLETED 0:0
12345.0 namd2 antwerpen+ 64 COMPLETED 0:0

sacct

sacct — Information about (terminated) jobs

➢ Retrieving job details

o get an overview for jobs in a given time range

sacct -S <start-datetime> -E <end-datetime> -X

▪ datetime format: YYYY-MM-DD[THH:MM[:SS]] (other formats possible)

o get (all) the details of a given job — module load Miller

sacct -j <jobid> -o ALL -XP | mlr --c2x --ifs='|' cat

o get the batch script of a given job

sacct -j <jobid> -B

sacct manual page

sacct -S <start-datetime> -E <end-datetime> -X

sacct -j <jobid> -o ALL -XP | mlr --c2x --ifs='|' cat

sacct -j <jobid> -B

https://slurm.schedmd.com/sacct.html

sinfo — Get an overview of the cluster

➢ sinfo shows information about the partitions and their nodes in the cluster

$ sinfo
PARTITION AVAIL TIMELIMIT NODES STATE NODELIST
zen2 up 3-00:00:00 38 mix r1c01cn1.vaughan, ...
zen2 up 3-00:00:00 112 alloc r1c01cn2.vaughan, ...
zen2 up 3-00:00:00 1 idle r4c05cn2.vaughan
zen3 up 3-00:00:00 24 idle~ r6c01cn1.vaughan, ...
broadwell up 3-00:00:00 2 down~ r2c08cn1.leibniz, ...
ampere_gpu up 1-00:00:00 1 idle nvam1.vaughan

o show number of node is state allocated / mixed / idle / down

o note: ~ = the node is in powersave mode

sinfo

sinfo — Get an overview of the cluster

➢ Show info per node

$ sinfo -N -l -n r6c01cn4.vaughan,r1c02cn3.leibniz,amdarc2.vaughan
NODELIST NODES PARTITION STATE CPUS S:C:T MEMORY
amdarc2.vaughan 1 arcturus_gpu idle 64 2:32:1 245760
r1c02cn3.leibniz 1 broadwell allocated 28 2:14:1 114688
r6c01cn4.vaughan 1 zen3 idle~ 64 2:32:1 245760

o MEMORY = total amount of memory that can be allocated on the node (in kilobytes)

o S:C:T = structure of the node → sockets / cores / (hardware) threads

sinfo manual page

https://slurm.schedmd.com/sinfo.html

scontrol — View Slurm configuration and state

➢ scontrol view Slurm configuration and state

➢ Show information about:

o jobs: scontrol -d show job <jobid>

▪ shows CPU_IDs of CPUs assigned to the job

o partitions: scontrol show part [<part>]

o Slurm configuration: scontrol show config

➢ Inside a job script to:

o get a list of node names one per line: scontrol show hostnames

▪ $SLURM_JOB_NODELIST contains the same list but separated by commas

scontrol manual page

scontrol

https://slurm.schedmd.com/scontrol.html

salloc — Create a resource allocation

➢ salloc creates a resource allocation

➢ What salloc does – behind the scenes

o requests the resources and waits until they are allocated

o then start a shell on the node where you executed salloc – usually the login node

o afterwards, releases the resources

➢ Important: the shell is not running on the allocated nodes!

o but, from the shell, you can start job steps on the allocated resources using srun

salloc manual page

salloc

https://slurm.schedmd.com/salloc.html

Hands-on

➢ Given the incomplete job script matrix.slurm, which compiles and runs matrix_multiply.c

o make these changes to the job script

▪ add the project account to the jobscript – use ap_course_hpc_intro

▪ request 1 task with 10 cores

▪ change the output and error formats to be <jobname>.<jobid>.out

• remember: replace <jobname> and <jobid> by the proper filename pattern

▪ send yourself an email when the job is finished

▪ add a 300 second sleep at the end of the script – so it stays in the queue for a while longer

o submit the jobscript

▪ while the job is running, try several of the Slurm commands – squeue / sstat / sacct

▪ what information is stored in the accounting database? – sacct

➢ Clone our repository: git clone https://github.com/hpcuantwerpen/intro-hpc

https://github.com/hpcuantwerpen/intro-hpc
https://github.com/hpcuantwerpen/intro-hpc
https://github.com/hpcuantwerpen/intro-hpc

Summary — Slurm commands

➢ You can interact with the scheduler/resource manager
Slurm through a series of commands

➢ You cannot go without:

o sbatch: submit a batch script

o srun: Swiss army knife

▪ start a job step: run parallel tasks

▪ start an interactive job

o sacct: show information about (past) jobs

vscentrum.be

HPC@UAntwerp introduction
7 — Multi-core parallel jobs

Why parallel computing?

➢ Faster time to solution

o distributing code over N cores

o hope for a speedup by a factor of N

➢ Larger problem size

o distributing your code over N nodes

o increase the available memory by a factor N

o hope to tackle problems which are N times bigger

➢ In practice

o gain limited due to communication, memory overhead, sequential fractions in the code, …

o optimal number of cores/nodes is problem-dependent

o but, no escape possible – computers don’t really become faster for serial code

➢ Parallel computing is here to stay!

Types of parallel computing

1.Multithreading

o shared memory

o OpenMP

2.Multiprocessing

o distributed memory

o MPI

3.Hybrid

o combination

Compute node
Processor (socket)
Core (=CPU)
Memory

Types of parallel computing

1.Multithreading

o shared memory

o OpenMP

2.Multiprocessing

o distributed memory

o MPI

3.Hybrid

o combination

OpenMP software uses multiple or
all cores in a single node
e.g. 24 threads within 1 node

MPI software can use (all) cores
in multiple nodes
e.g. 8 tasks spread over 2 nodes

Hybrid OpenMP/MPI software
e.g. 6 threads per task
& 8 tasks over 2 nodes
(each task stays within 1 node)

Active core

Inactive core

Running a shared memory job – Multithreading

➢ Shared memory job = single task with multiple CPUs per task

o all threads for the task run on within a single node

➢ Tell the program how many threads it can use

o depends on the program - e.g.: for MATLAB, use maxNumCompThreads(N)

▪ note: autodetect usually only works if the program gets the whole node

o many OpenMP programs use the environment variable OMP_NUM_THREADS

▪ Intel OpenMP recognizes Slurm CPU allocations

o for MKL-based code/operations, use MKL_NUM_THREADS – instead of OMP_NUM_THREADS

o for OpenBLAS (FOSS toolchain), use OPENBLAS_NUM_THREADS

➢ Check the manual of the program you use!

o e.g., NumPy has several options (depending on how it was compiled)

Running a shared memory job – Multithreading

➢ OpenMP example script

generic-omp.slurm
#!/bin/bash

#SBATCH --job-name=OpenMP-demo
#SBATCH -A ap_course_hpc_intro
#SBATCH --ntasks=1 --cpus-per-task=64
#SBATCH --mem-per-cpu=2g

← 1 task with 64 CPUs (so 64 threads)
← 2 GB per CPU, so 128 GB total memory

module --force purge
module load calcua/2024a ← load the calcua module
module load vsc-tutorial/202203-intel-2024a ← load vsc-tutorial – also loads the Intel

toolchain (for the OpenMP run time)
export OMP_NUM_THREADS=$SLURM_CPUS_PER_TASK ← set the number of (OpenMP) threads to use
export OMP_PROC_BIND=true ← threads stay on the core where they’re created
omp_hello ← run the program

Running a distributed memory job – MPI

➢ Distributed memory job = several tasks running in parallel

o the tasks can be spread over multiple (different) nodes

o communication → message passing interface (MPI)

➢ Every distributed memory program needs a program starter

o some packages use system starter internally

o mpirun works, but depends on variables set in the intel modules

▪ so ensure to properly load the module!

o the preferred program starter for Slurm = srun

▪ knows how Slurm distributes processes

▪ needs no further arguments if resources are correctly requested – tasks & CPUs per task

o Check the manual of the program you use!

▪ is there an option to explicitly set the program starter?

Running a distributed memory job – MPI

➢ (Intel) MPI example script

generic-mpi.slurm
#!/bin/bash

#SBATCH --job-name mpihello
#SBATCH -A ap_course_hpc_intro
#SBATCH --ntasks=128 --cpus-per-task=1
#SBATCH --mem-per-cpu=1g

← 128 MPI processes (uses 2 nodes on Vaughan, or
5 nodes on Leibniz/Breniac)

module --force purge
module load calcua/2024a ← load the calcua module
module load vsc-tutorial/202203-intel-2024a ← load vsc-tutorial – also loads the Intel toolchain

(for the MPI libraries)
srun mpi_hello ← run the MPI program – srun communicates

 with the resource manager

Running a hybrid OpenMP/MPI job

➢ Hybrid job = combination of OpenMP and MPI

➢ No additional tools needed to start hybrid programs

o srun does all the miracle work

▪ or mpirun in Intel MPI – provided the environment is set up correctly

▪ no need for vsc-mympirun (still used by some VSC sites)

Running a hybrid OpenMP/MPI job

generic-hybrid.slurm
#!/bin/bash

#SBATCH --job-name hybrid_hello
#SBATCH -A ap_course_hpc_intro
#SBATCH --ntasks=8 --cpus-per-task=16
#SBATCH --partition=zen2 --nodes=2

← 8 MPI processes with 16 threads
← make sure the job uses 2 Vaughan compute

nodes (to avoid cluttering)
module --force purge

module load calcua/2024a ← load the software stack module
module load vsc-tutorial/202203-intel-2024a ← load vsc-tutorial – also load

 the Intel toolchain
export OMP_NUM_THREADS=$SLURM_CPUS_PER_TASK ← set the number of (OpenMP) threads to use
export OMP_PROC_BIND=true ← threads stay on the core where they’re created

srun –c $SLURM_CPUS_PER_TASK mpi_omp_hello ← run the MPI program (mpi_omp_hello)
 srun does all the magic

Job monitoring — Commands for interactive monitoring

➢ When your job is running

o how do I know how much memory my job is using?

o how can I check if my job is running properly, i.e. using the allocated CPUs?

➢ While your job is running, you can log on to the compute nodes assigned to that job

o check which compute nodes a job uses: squeue –j <jobid>
o log on to a compute node: ssh <compute-node>
o run a command on all allocated nodes: srun --jobid <jobid> --overlap <command>

➢ When logged in on the compute node, check the behavior

o htop → core & memory usage

o sar → system performance metrics like CPU / memory / disk usage over time

o vmstat → monitors system memory / processes / CPU activity / I/O statistics in real-time

o pstree → display a tree view of the running processes

Job monitoring — The monitor module

➢ Add monitoring in your job script

o sample a programs’ metrics – CPU usage and memory consumption

o can also check the sizes of (temporary) files

o only single node jobs are supported — not MPI support

➢ Usage examples:

o monitor -d 30 -n 20 -l monitor.log <command>
▪ use a sample rate (delta) of 30 seconds, keep only the last 20 results, and log to a file

o monitor –f file1.tmp,file2.tmp <command>

▪ check the size of the (temporary) files

o monitor -d 60 -- matlab -nojvm -nodisplay computation.m

▪ delimit the monitor’s options (to avoid confusion)

Monitoring memory and CPU usage of programs

Github repository for monitor — by Geert Jan Bex

https://docs.vscentrum.be/jobs/monitoring_memory_and_cpu_usage_of_programs.html
https://github.com/gjbex/monitor

Hands-on

➢ Submit the parallel jobs from this section using the provided job scripts

o a shared memory (OpenMP) job: prime-omp.slurm

o a distributed memory (MPI) job: prime-mpi.slurm

o a hybrid OpenMP/MPI job: prime-hybrid.slurm

➢ While the jobs are running

o check where the job is running

o log on to the first node allocated to that job

o run the job monitoring commands

▪ is your job behaving properly?

➢ When your job finishes

o check the output files

Summary — Multi-core parallel jobs

➢ The key to supercomputing is parallelization

➢ A program can be parallelized in 2 ways:

o shared memory: multithreading

o distributed memory: multiprocessing
(needs a program starter like srun)

➢ You should monitor your computation to ensure
resources are used properly

vscentrum.be

HPC@UAntwerp introduction
8 — Multi-job submission

Running a large batch of small jobs

➢ Scenario: you want to run many, many, many small (short/serial) jobs

o but: submitting and tracking many short jobs → burden on scheduler

➢ Solutions:

o Job arrays: submit a large number of related yet independent jobs at once

▪ to manage array jobs, use atools

o srun can be used to launch more tasks than requested in the job request

▪ running no more than the indicated number of tasks simultaneously

o GNU parallel: tool to easily run shell commands in parallel with different inputs

▪ general-purpose tool, can be used in multiple scenarios

➢ Note: these independent (sub) jobs can also run simultaneously across multiple nodes

https://atools.readthedocs.io/en/latest/
https://www.gnu.org/software/parallel/
https://www.gnu.org/software/parallel/
https://www.gnu.org/software/parallel/

Job arrays

➢ Starts from a job script for a single (sub) job in the array

➢ Specify the number of (sub) jobs in the array

 sbatch --array 1-100 job_array.slurm

➢ Result: the program will be run for all input files (100)

#!/bin/bash
#SBATCH --ntasks=1 --cpus-per-task=1
#SBATCH --mem-per-cpu=512M
#SBATCH --time 15:00

INPUT_FILE="input_${SLURM_ARRAY_TASK_ID}.dat"
OUTPUT_FILE="output_${SLURM_ARRAY_TASK_ID}.dat"

./calculation ${SLURM_ARRAY_TASK_ID} -input ${INPUT_FILE} -output ${OUTPUT_FILE}

← for every run, there is a separate input
 file and an associated output file

job_array.slurm

sbatch --array 1-100 job_array.slurm

Job arrays – atools

➢ Features of atools

o provides a logging facility and commands to investigate the logs

▪ which items failed or did not complete → restart only those

o has limited support for Map-Reduce scenarios

▪ preparation phase → split up data in manageable chunks

▪ process all chunks in parallel

▪ postprocessing phase → combine the results into one file

➢ atools versus GNU parallel

o atools uses job arrays: relies on the scheduler to start all work items

o while parallel starts the work items itself, but cannot start work items on another node

atools – by Geert Jan Bex

https://atools.readthedocs.io/en/latest/

➢ The field names of the header in the CSV file are used as variables inside the job script

➢ Run weather for all data values (from data.csv)

 module load atools/1.5.1
 sbatch --array $(arange --data data.csv) weather.slurm

atools example – Parameter exploration

temperature, pressure, volume
293.0, 1.0e05, 87
..., ..., ...
313, 1.0e05, 75

data.csv
#!/bin/bash
#SBATCH --ntasks=1 --cpus-per-task=1
#SBATCH --time=10:00
module --force purge
module load calcua/2024a atools/1.5.1

source <(aenv --data data.csv)
./weather -t $temperature -p $pressure -v $volume

weather.slurm

input data in CSV format

module load atools/1.5.1
sbatch --array $(arange --data data.csv) weather.slurm

Summary — Multi-job submission

➢ Another type of parallelization is embarrassingly
parallel (or high throughput), where all the tasks are
independent

➢ Slurm supports job arrays to submit a job script
multiple times

➢ atools helps you manage job arrays

o get parameters from a .csv file

o rerun failed jobs

o combine/aggregate data

Hands-on

➢ Round the table questions

o what type of software will you be running?

o which scenario applies most to your use case?

▪ will you be running large parallel jobs — make sure your jobs use all the resources

▪ or some medium-sized jobs

▪ or lots of small jobs — try bundling the jobs whenever possible

o how will you be organizing your jobs?

▪ will (most of) your jobs use a similar job script — try using variables and arguments

▪ will your jobs depend on each other or are they independent

➢ Discuss with your neighbours and check out the (relevant) extra examples in more_examples

vscentrum.be

HPC@UAntwerp introduction
9 — Installing your own software

Installing your own software

➢ Custom software should be installed in your own directory — preferably in $VSC_DATA

➢ If the package is supported by EasyBuild

o modify an existing build script — called ”easyconfig"

o use our helper script to setup an EasyBuild environment (under $VSC_DATA/easybuild)

source init-easybuild-user.sh

➢ Otherwise: manually install the package

o find the building instructions for the package

o load a (sub)toolchain module and other modules that provide the libraries you need

o make sure to set the proper options for the architecture

➢ Alternative: use Apptainer containers instead → see next slides

EasyBuild documentation and tutorial

https://docs.easybuild.io/
https://tutorial.easybuild.io/

Installing your own packages

➢ Python (pip), R, Julia, ... packages

o load an appropriate Python, R, Julia, ... module

o point the install prefix to an appropriate directory

▪ e.g.: R_LIBS_USER, JULIA_DEPOT_PATH → in a subdirectory of $VSC_DATA

o note: when using pip, also change the location of the cache directory ~/.cache → file quota!

➢ Conda environments are discouraged

o installations involve many small files → file quota!

o typically, they do not use system and software stack libraries – possible performance issues

o consume a lot of disk space and put stress on the filesystem

o alternative → wrap the Conda environment in a container

Installing packages using pip

R package management

https://docs.vscentrum.be/software/python_package_management.html#installing-packages-using-pip
https://docs.vscentrum.be/software/python_package_management.html#installing-packages-using-pip
https://docs.vscentrum.be/software/r_package_management.html#r-package-management

Using containers – hpc-container-wrapper

➢ Solution: use hpc-container-wrapper – formerly known as Tykky

o tool to wrap your Python installation into a container, designed for use on HPC systems

o uses environment.yaml (Conda) or requirements.txt (pip) to build a container image

o provides wrapper scripts to transparently call executables within the container environment

▪ also provides wrap-container to generate wrapper scripts for an existing container

➢ Create the container with conda-containerize

$ module load hpc-container-wrapper

$ conda-containerize new --prefix

 "$VSC_SCRATCH/bsoup" environment.yaml

➢ Similar for pip-containerize

name: bsoup4
channels:
 - conda-forge
dependencies:
 - beautifulsoup4
 - ...

environment.yaml

Using containers – hpc-container-wrapper

➢ Use your containerized Python installation (e.g., from within a job)

$ export PATH="$VSC_SCRATCH/bsoup/bin:$PATH"

$ which python

$VSC_SCRATCH/bsoup/bin/python

$ python -c "from bs4 import BeautifulSoup; soup = BeautifulSoup('<p>Hello
World</p>', 'html.parser'); print(soup.p.text)”

Hello World

➢ Still missing packages? → update the container

$ conda-containerize update --post-install
 post.sh "$VSC_SCRATCH/bsoup"

Github repository or documentation

pip install requests
conda install -c bioconda pyfaidx

post.sh

https://github.com/CSCfi/hpc-container-wrapper
https://docs.csc.fi/computing/containers/tykky/

Using containers – apptainer

➢ Apptainer is available to build and run your container images

o note: Docker is typically not supported due to security concerns

➢ Option: convert a (pre-build) Docker image to Apptainer

$ apptainer pull docker://hello-world:latest

$ apptainer run hello-world_latest.sif

➢ Alternative: build an image from scratch using build scripts

o called definition files – similar to a Dockerfile

$ export APPTAINER_CACHEDIR=$VSC_SCRATCH/apptainer/cache

$ export APPTAINER_TMPDIR=$(mktemp -d -p /dev/shm)

$ apptainer build ubuntu_fpc.sif ubuntu_fpc.def

$ apptainer exec ubuntu_fpc.sif fpc -h

Can I run containers on the HPC systems?

Containers for HPC — VSC course, with GitHub repository — by Geert Jan Bex

BootStrap: docker
From: ubuntu:oracular

%post
 apt-get update

 apt-get install -y fpc

ubuntu_fpc.def

https://apptainer.org/
https://apptainer.org/
https://docs.vscentrum.be/software/singularity.html
https://www.vscentrum.be/events/containers-for-hpc-2
https://github.com/gjbex/Containers-for-HPC

Summary — Installing your own software

➢ You can install your own software, using:

o Easybuild

o manual install

o Apptainer

➢ Sometimes Conda environments are necessary

o hpc-container-wrapper is strongly recommended

vscentrum.be

HPC@UAntwerp introduction
10 — Interactive applications

Running interactive applications on the compute nodes

➢ With sbatch you run jobs on compute nodes without user interaction

o you need to provide all the input in advance

o you cannot interact with the script or program while it is running

➢ Sometimes, you need to interact with a running program

o when building software on a compute node in an interactive shell

o when running an interactive Python session in a Jupyter notebook

o when developing software using a dedicated IDE (integrated development environment)

➢ You can run interactive applications on the compute nodes

o using web portal apps

o with srun --pty bash

o or using ssh

Web portal apps — New

➢ Currently available — more apps will be added

o Interactive Shell

o JupyterLab

o RStudio Server

o VS Code Server or VS Code Tunnel

▪ I have VS Code installed on my pc → VS Code Tunnel suggested

➢ Important: interactive apps keep on running if you close the browser window

o you need to explicitly cancel the app listed in “My Interactive Sessions”

Open OnDemand — apps listed in navigation panel on the left

https://jupyterlab.readthedocs.io/
https://jupyterlab.readthedocs.io/
https://posit.co/products/open-source/rstudio-server
https://posit.co/products/open-source/rstudio-server
https://code.visualstudio.com/docs/remote/vscode-server
https://code.visualstudio.com/docs/remote/vscode-server
https://code.visualstudio.com/docs/remote/tunnels
https://docs.vscentrum.be/compute/portal/ondemand/index.html

Web portal apps — New

Web portal apps — Interactive Shell

Web portal apps — Interactive Shell

Web portal apps — Interactive Shell

Web portal apps — JupyterLab

Web portal apps — JupyterLab

Using the visualisation node

➢ Note: will soon be replaced by a desktop portal web app

➢ Use case: sometimes running GUI programs is necessary – e.g.: for visualisation of results

o and some GUI programs need GPU-accelerated hardware — e.g., GaussView, MonolixSuite

➢ Leibniz has one visualisation node: viz1.leibniz

o NVIDIA Quadro Pascal P5000 GPU

o has Xfce as desktop/window manager

o uses VirtualGL for graphics acceleration → e.g.: vglrun glxgears

➢ To access to remote desktop, you need to

o use a VNC client, such as TurboVNC or TigerVNC

o setup an SSH-tunnel (when accessing from outside Belgium)

Remote visualisation @ UAntwerp

https://www.xfce.org/
https://virtualgl.org/
https://www.turbovnc.org/
https://tigervnc.org/
https://docs.vscentrum.be/antwerp/remote_visualization_uantwerp.html

vscentrum.be

HPC@UAntwerp introduction
X — Extra topics

Job workflows — Examples

➢ Some scenarios

o run simulations using results of a previous simulation, but with a different number of nodes

▪ e.g., in CFD: first a coarse grid computation, then refining the solution on a finer grid

o perform extensive sequential pre- or postprocessing of a parallel job

post-process
time

resources

PROCESS

pre-
process

Wasted resources

Job workflows — Examples

➢ Some scenarios

o run simulations using results of a previous simulation, but with a different number of nodes

▪ e.g., in CFD: first a coarse grid computation, then refining the solution on a finer grid

o perform extensive sequential pre- or postprocessing of a parallel job

o run a sequence of simulations, each depending on result of previous one

▪ what to do when the max. wall time is reached?

o run a simulation, apply perturbations to the solution

▪ then run subsequent simulations for each perturbation

➢ Workflow = order in which the jobs will be submitted or run

Job workflows — Passing variables to job scripts

➢ Remember: on UAntwerp clusters, only a minimal environment is passed to the job

➢ Variables need to be passed explicitly, otherwise sbatch will not see them

o propagate a value of (already existing) environment variables

 sbatch --export=<myenv1>,<myenv2>

o pass a variable with given value to the job environment

sbatch --export=<myenv>=<value>

o note: SLURM_* variables are always propagated

sbatch --export=<myenv1>,<myenv2>

sbatch --export=<myenv>=<value>

➢ Command line arguments for the job script are passed after the name of the job script

o Create a test script

o Now run

 sbatch get_parameter.slurm people

o The output file will contain

 Hello people.

Job workflows — Passing arguments to job scripts

#!/bin/bash
#SBATCH --ntasks=1 --cpus-per-task=1
#SBATCH --mem-per-cpu=500m
#SBATCH --time=5:00

echo "Hello $1."

get_parameter.slurm

sbatch get_parameter.slurm people

Job workflows — Job dependencies

➢ You can instruct Slurm to start a job only

o when some (or all) jobs from list of jobs have ended

 sbatch --dependency=afterok:<jobid>

o after a job has failed

 sbatch --dependency=afternotok:<jobid>

➢ Useful to organize series of (subsequent) jobs

o powerful in combination with environment variables

o or command line arguments passed to job scripts

the sbatch manual page – look for --dependency

sbatch --dependency=afterok:<jobid>

sbatch --dependency=afternotok:<jobid>

https://slurm.schedmd.com/sbatch.html

Summary — Job workflows

➢ A workflow is the order and rules that decide how jobs
run

➢ Slurm supports job dependencies, where a job can only
start after another job has ended
$ sbatch --dependency=...

➢ You can pass environment variables and arguments to a
job
$ sbatch --export=ENVVAR job.sh arg

vscentrum.be

HPC@UAntwerp introduction
Final notes

Some best practices

➢ Before starting to submit jobs, you should always check

o are there any errors in the script?

o are the required modules loaded?

o is the correct executable used?

o did you use the right process starter (srun)?

o does the job start in the right directory?

➢ Check your jobs at runtime

o login to a compute node and inspect your jobs

▪ If you see that the CPU is idle most of the time that might be the problem

o check the job accounting information (e..g.: MinCPU and AvgCPU)

o alternatively: run an interactive job for the first run of a set of similar runs

o try to benchmark the software for (I/O) scaling issues when using MPI

Warnings

➢ Avoid submitting many small jobs (in number of cores) by grouping them

o using a job array

o or using atools

➢ Runtime is limited by the maximum wall time of the partition

o for longer wall time, use checkpointing

o properly written applications have built-in checkpoint-and-restart options

➢ Requesting many processors could imply lon waiting times

o though we're still trying to favour parallel jobs

what a cluster is not

Some site policies

➢ Our policies on the cluster

o nodes are shared resources

o priority based scheduling – so not “first come, first get”

o fairshare mechanism – to make sure one user cannot monopolise the cluster

o Accounting @ CalcUA → using a project account is mandatory

➢ Implicit user agreement

o the cluster is valuable research equipment

o do not use it for other purposes than your research for the university

▪ no cryptocurrency mining or SETI@home and similar initiatives!

▪ not for private use

o you have to acknowledge the VSC in your publications

➢ Do not share your account nor your keys

https://www.uantwerpen.be/en/research-facilities/calcua/support/accounting/
https://www.uantwerpen.be/en/research-facilities/calcua/support/accounting/
https://docs.vscentrum.be/how_do_i_acknowledge_the_vsc_in_publications.html

Project accounts and credits

➢ At UAntwerp Tier-2, we use accounting — as of March 2024

o using a project account is mandatory

o billing is done for both computing (jobs) and storage (files)

➢ On VSC Tier-1, you get compute time allocation

o number of core hours or GPU hours

o enforced through project credits

o requested through a project proposal

o free test ride “Starting Grant” — motivation required

➢ On KU Leuven Tier-2, you need compute credits

o bought directly via KU Leuven

Project access Tier-1

Credits to use KU Leuven infrastructure

https://www.vscentrum.be/compute
https://www.vscentrum.be/compute
https://www.vscentrum.be/compute
https://docs.vscentrum.be/leuven/credits.html

User support

➢ Questions? → contact us via hpc@uantwerpen.be

o offices @ CMI — G.309-G.313

➢ mailing-list for announcements: calcua-announce@lists.uantwerpen.be

o every now and then a more formal “HPC newsletter”

➢ Some guidelines for help

o be as precise as possible – e.g.: give job id, submit dir, output files, …

o help us help you – read (and understand) the relevant documentation

CalcUA website – VSC docs – Slurm docs

mailto:hpc@uantwerpen.be
mailto:calcua-announce@lists.uantwerpen.be
mailto:calcua-announce@lists.uantwerpen.be
mailto:calcua-announce@lists.uantwerpen.be
https://calcua.uantwerpen.be/
https://docs.vscentrum.be/
https://slurm.schedmd.com/documentation.html

The end

Course feedback

➢ Please fill in our short questionnaire before Nov 1st

➢ Let us know what you liked and how we can improve our courses

➢ Thank you for your participation!

https://forms.cloud.microsoft/e/tuw2Vn2juZ

More training

➢ HPC core facility CalcUA

o Introduction to Linux

o HPC@UAntwerp introduction

o Supercomputers for starters

➢ VSC Trainings

o trainings organized by other VSC sites
and abroad (including LUMI, and
EuroCC)

➢ Training sessions by Geert Jan Bex

➢ Getting scientific software installed

o 03 Nov 2025, 09:00 – 17:00 CET

o Belpaire Building, Brussels

https://hpc.uantwerpen.be/
https://hpc.uantwerpen.be/
https://www.vscentrum.be/vsctraining
https://www.vscentrum.be/vsctraining
https://gjbex.github.io/Training-sessions/
https://gjbex.github.io/Training-sessions/
https://www.vscentrum.be/events/getting-scientific-software-installed
https://www.vscentrum.be/events/getting-scientific-software-installed

	HPC@UAntwerp introduction — Part 1
	Slide 1: HPC@UAntwerp introduction
	Slide 2: Table of contents – Part 1

	1 — Introduction to the VSC
	Slide 3: HPC@UAntwerp introduction
	Slide 4: CalcUA and VSC
	Slide 5: The European HPC landscape
	Slide 6: UAntwerp Tier-2 infrastructure
	Slide 7: UAntwerp Tier-2 infrastructure
	Slide 8: VSC Tier-1 infrastructure
	Slide 9: VSC Tier-1 infrastructure
	Slide 10: New VSC Tier-1 infrastructure — Operational in 2026
	Slide 11: Characteristics of a HPC cluster

	2 — Connect to the cluster
	Slide 12: HPC@UAntwerp introduction
	Slide 13: A typical workflow
	Slide 14: Types of cluster nodes
	Slide 15: Web portal access — New
	Slide 17: Web portal access — https://portal.hpc.uantwerpen.be
	Slide 18: Web portal access — Connect to the cluster
	Slide 19: Web portal access — Connect to the cluster
	Slide 20: Summary — Access to a HPC cluster

	3 — Transfer your files to the cluster
	Slide 21: HPC@UAntwerp introduction
	Slide 22: A typical workflow
	Slide 23: File systems and user directories
	Slide 24: Block and file quota limits
	Slide 25: Web portal access — Transfer your files
	Slide 26: Globus — Data sharing platform
	Slide 27: Globus — Data sharing platform
	Slide 28: Globus — Data sharing platform
	Slide 29: Globus — Data sharing platform
	Slide 30: Globus — Transfer between remote servers
	Slide 32: Globus — Transfer from/to local computer
	Slide 33: Globus — Transfer from/to local computer
	Slide 36: Best practices for file storage
	Slide 37: Hands-on
	Slide 38: Summary — Transfer your files to the cluster

	4 — Select the software and build your environment
	Slide 39: HPC@UAntwerp introduction
	Slide 40: A typical workflow
	Slide 41: System software
	Slide 42: Development software
	Slide 43: Application software
	Slide 44: Licensed software
	Slide 45: Software installation and support
	Slide 46: Selecting software
	Slide 47: Toolchains
	Slide 48: CalcUA modules
	Slide 49: Using modules
	Slide 50: Best practices for using modules
	Slide 51: Hands-on
	Slide 52: Summary — Select software & build your environment

	5 — Define and submit your job
	Slide 53: HPC@UAntwerp introduction
	Slide 54: A typical workflow
	Slide 55: Running batch jobs
	Slide 56: Job submission workflow – Behind the scenes
	Slide 57: Job script example
	Slide 58: Important Slurm concepts
	Slide 59: Slurm resource requests – Overview
	Slide 60: Slurm resource requests – Tasks & CPUs per task
	Slide 61: Slurm resource requests – Memory per CPU
	Slide 62: Slurm resource requests – Wall time
	Slide 63: Slurm resource requests – Project account
	Slide 64: Slurm resource requests – Partitions
	Slide 65: CalcUA clusters – Partitions and node information
	Slide 66: Hands-on
	Slide 68: Slurm resource requests – Faster communication
	Slide 69: Slurm resource requests – Exclusive node access
	Slide 70: Slurm resource requests – Number of nodes
	Slide 71: Non-resource-related options – Job name
	Slide 72: Non-resource-related options – Redirect stdout / stderr
	Slide 73: Non-resource-related options – Mail notifications
	Slide 74: The job runtime environment
	Slide 75: The job runtime environment
	Slide 77: Summary — Define & submit your job

	X — Using the command-line
	Slide 78: HPC@UAntwerp introduction
	Slide 79: SSH access — Required software
	Slide 80: SSH access — Required software
	Slide 81: SSH access — Public/private key pairs
	Slide 82: SSH access — Public/private key pairs
	Slide 83: SSH access — Connect to the cluster
	Slide 84: SSH access — Connect to the cluster
	Slide 85: SSH access — Using an SSH configuration file
	Slide 86: SCP/SFTP access — Transfer your files
	Slide 87: Hands-on
	Slide 88: Summary — SSH access
	Slide 89: Globus – Command line interface
	Slide 90: Globus – Command line interface
	Slide 91: OneDrive – Command line interface
	Slide 92: OneDrive – Command line interface

	Sneak preview
	Slide 93: Part 2 — Sneak preview

	HPC@UAntwerp introduction — Part 2
	Slide 94: HPC@UAntwerp introduction
	Slide 95: Table of contents – Part 2

	6 — Slurm commands
	Slide 96: HPC@UAntwerp introduction
	Slide 97: Slurm commands – Overview
	Slide 98: sbatch — Submit a batch script
	Slide 99: sbatch — Submit a batch script
	Slide 100: squeue — Check the status of your jobs
	Slide 101: squeue — Check the status of your jobs
	Slide 102: scancel — Cancel a job
	Slide 103: srun — Run parallel tasks
	Slide 104: sstat — Information about running jobs
	Slide 105: sstat — Information about running jobs
	Slide 106: sacct — Information about (terminated) jobs
	Slide 107: sacct — Information about (terminated) jobs
	Slide 108: sinfo — Get an overview of the cluster
	Slide 109: sinfo — Get an overview of the cluster
	Slide 110: scontrol — View Slurm configuration and state
	Slide 111: salloc — Create a resource allocation
	Slide 112: Hands-on
	Slide 113: Summary — Slurm commands

	7 — Multi-core parallel jobs
	Slide 114: HPC@UAntwerp introduction
	Slide 115: Why parallel computing?
	Slide 116: Types of parallel computing
	Slide 117: Types of parallel computing
	Slide 118: Running a shared memory job – Multithreading
	Slide 119: Running a shared memory job – Multithreading
	Slide 120: Running a distributed memory job – MPI
	Slide 121: Running a distributed memory job – MPI
	Slide 122: Running a hybrid OpenMP/MPI job
	Slide 123: Running a hybrid OpenMP/MPI job
	Slide 124: Job monitoring — Commands for interactive monitoring
	Slide 125: Job monitoring — The monitor module
	Slide 126: Hands-on
	Slide 127: Summary — Multi-core parallel jobs

	8 — Multi-Job submission
	Slide 128: HPC@UAntwerp introduction
	Slide 129: Running a large batch of small jobs
	Slide 130: Job arrays
	Slide 131: Job arrays – atools
	Slide 132: atools example – Parameter exploration
	Slide 133: Summary — Multi-job submission
	Slide 135: Hands-on

	9 — Installing your own software
	Slide 136: HPC@UAntwerp introduction
	Slide 137: Installing your own software
	Slide 138: Installing your own packages
	Slide 140: Using containers – hpc-container-wrapper
	Slide 141: Using containers – hpc-container-wrapper
	Slide 142: Using containers – apptainer
	Slide 143: Summary — Installing your own software

	10 - Interactive applications
	Slide 144: HPC@UAntwerp introduction
	Slide 145: Running interactive applications on the compute nodes
	Slide 146: Web portal apps — New
	Slide 147: Web portal apps — New
	Slide 148: Web portal apps — Interactive Shell
	Slide 149: Web portal apps — Interactive Shell
	Slide 150: Web portal apps — Interactive Shell
	Slide 151: Web portal apps — JupyterLab
	Slide 152: Web portal apps — JupyterLab
	Slide 155: Using the visualisation node

	X - Extra topics
	Slide 156: HPC@UAntwerp introduction
	Slide 157: Job workflows — Examples
	Slide 158: Job workflows — Examples
	Slide 159: Job workflows — Passing variables to job scripts
	Slide 160: Job workflows — Passing arguments to job scripts
	Slide 161: Job workflows — Job dependencies
	Slide 165: Summary — Job workflows

	Final notes
	Slide 166: HPC@UAntwerp introduction
	Slide 167: Some best practices
	Slide 169: Warnings
	Slide 170: Some site policies
	Slide 171: Project accounts and credits
	Slide 172: User support

	Outro
	Slide 173: The end
	Slide 174: More training

