/
?% Vlaanderen
(is supercomputing

e

S .) - ¥)
>]\

HPC@UAntwerp mtroductlon

Ine Arts, Franky BackeIJauw Stefan Becuwe, Bert Jorlssen Kurt Lust,
Carl Mensch, Michele Pugno, Bert Tijskens, Robin Verschoren

Version Spring 2025 - Part 1

< o VLAAMS
UPERCOMPUTER | /nnovative Computin
CENTRUM | for A Smarter F/andeé;s vscentrum.be

Table of contents — Part 1

Introduction to the VSC
* UAntwerp Tier-2 infrastructure
* VSC Tier-1infrastructure

* Characteristics of a HPC cluster

Getting a VSC account

* SSH and public/private key pairs
* Required software

¢ Create your VSC account

Connect to the cluster

* Types of cluster nodes

« Connecting to the cluster using SSH
 Using an SSH configuration file

Transfer your files to the cluster
* File systems and user directories

* Block and file quota

 Transferring your files

* Globus data sharing platform

* Best practices for file storage

Select the software and
build your enviroment

System, development and application software
Software installation and support

Selecting software using modules

Toolchains & the CalcUA modules

Searching, loading and unloading modules
Best practices for using modules

Define and submit your jobs

Running batch jobs

Job submission workflow
Job script example
Important Slurm concepts
Slurm resource requests
Non-resource-related options
The job environment

Vlaanderen

HPC@UAntwerp mtroductlon
1 — Introduction to the VSC

< o VLAAMS
UPERCOMPUTER | /nnovative Computin
CENTRUM | for A Smarter F/andeé;s vscentrum.be

CalcUA and VSC

> HPC core facility CalcUA
o provides HPC infrastructure & software for researchers
o offer training & support
o UAntwerp Tier-2 infrastructure (local)

> Vlaams Supercomputer Centrum (VSC)
o partnership between 5 University associations: Antwerp, Brussels, Ghent, Hasselt, Leuven
o FWO funded (Research Fund — Flanders)
o goal: make HPC available to all researchers in Flanders — academic and industrial
o provides central Tier-1 infrastructure
o other local Tier-2 infrastructures: VUB, UGent and KU Leuven / UHasselt

https://hpc.uantwerpen.be/
https://vscentrum.be/

The European HPC landscape

— x X e —
I/r Y Y \I\I

e i Burolic

= oint Undertakin

4 == :
regional/
/ national

VLAAMS A
SUPERCOMPUTER /(Vlaanderen /
Tier-3

desktop

UAntwerp Tier-2 infrastructure

e AMD Zen2
152 compute nodes

& UAntwerp Tier-2 Infrastructure

40 compute nodes
e 2Xx 14 cores e 2Jx 32 cores @
2GPUnodes &R 1 GPU node
 2x Nvidia P100 e 4x Nvidia A100 23 compute nodes
Vector engine node 5GP nodes * Intel Skylake @
Visualization node « 2% AMD MI100 * 2x 14 cores

https://docs.vscentrum.be/antwerp/tier2_hardware.html

UAntwerp Tier-2 infrastructure

\Orchestrating a brighter world

NEC

VSC Tier-1 infrastructure

2 VVSC Tier-1 Infrastructure

Hortense (UGent)
PHASE 2

[2 Login nodes] 384 compute nodes
* AMD Milan

« 2X 64 cores

20 GPU nodes

* 4x Nvidia A100

384 compute nodes

« AMD Rome

« 2X 64 cores

20 GPU nodes

 4x Nvidia A100 Storage system E
shared, 5.4 PB

> new Flemish Tier-1 supercomputer (Green Energy Park @ VUB) to be operational in 2025

https://docs.vscentrum.be/hardware-tier1.html
https://bdia.be/vub-will-house-new-flemish-tier-1-supercomputer-at-its-green-energy-park-site/

VSC Tier-1 infrastructure

Hortense (UGent)

Characteristics of a HPC cluster

> Shared infrastructure, used by multiple users simultaneously
o you need to request the appropriate resources
o you may have to wait a while before your computation starts

» Expensive infrastructure
o software efficiency matters!

> Built for parallel jobs
o no parallelism = no supercomputing
o not meant for running a single one-core job

» Remote computation model
o for batch computations rather than interactive applications

> Linux-based systems
o no Windows or macOS software

VIaanderjen

HPC@UAntwerp mtroductlon
2 — Get a VSC account </ ;

< o VLAAMS
UPERCOMPUTER | /nnovative Computin
CENTRUM | for A Smarter F/andeé;s vscentrum.be

SSH and public/private key pairs

» Communication with the cluster happens through SSH (Secure SHell)
o Protocol to log in to a remote computer, transfer files (SFTP), ...
o uses public/private key pairs

- passphrase

B : - don’t share
private key Keep safe!
/home/<username>/.ssh/id_rsa ﬁ

account Page
/home/<username>/.ssh/id_rsa.pub é

https://account.vscentrum.be/
https://account.vscentrum.be/

Required software

> Windows
o SSH client included in latest versions of Windows 10 or above

= check if present in Windows Settings > System > Optional features
o optional: use Windows Subsystem for Linux (WSL)
= install and use a Linux distribution of your choice
= now also supports running Linux GUI apps
o optional: use Windows Terminal (available via the Microsoft Store)
= choose between Command Prompt, PowerShell, and bash (via WSL)

https://learn.microsoft.com/en-us/windows/wsl/
https://learn.microsoft.com/en-us/windows/terminal/
https://mobaxterm.mobatek.net/
https://www.putty.org/

Required software

> macOS
o SSH client included
o Terminal app (built-in) or iTerm2

o for graphical applications (X11), use XQuartz
o optional: Homebrew

= allows to install Linux commands
= can also install applications
o remark: macOS is based on BSD (Unix)
= (BSD variants of) commands may behave differently

» Linux
» SSH client included
» choice of terminal and shell
» supports graphical applications

https://www.iterm2.com/
https://www.xquartz.org/
https://brew.sh/

Create your VSC account

& Create a public/private key pair
o create RSA key pair (at least 4096 bits)

$ ssh-keygen -t rsa -b 4096

o note: on Windows, when using PuTTYgen key generator
= use PUTTY key format 2 in latest version
= Convert the public key to OpenSSH format

& Upload public key — VSC account page
o web-based registration procedure

> your VSC username is vSC2xXxXxx

VLAAMS
SUPERCOMPUTER
CENTRUM

https://docs.vscentrum.be/access/generating_keys.html
https://docs.vscentrum.be/access/generating_keys.html
https://account.vscentrum.be/

VIaanderjen

HPC@UAntwerp mtroductlon

3 — Connect to the cluster

< o VLAAMS
UPERCOMPUTER | /nnovative Computin
CENTRUM | for A Smarter F/andeé;s vscentrum.be

A typical workflow

Connect to the cluster

Transfer your files to the cluster

Select the software and build your environment
Define and submit your job

Wait while

» your job gets scheduled

» your job gets executed

» your job finishes

6. | Move your results

s W=

Types of cluster nodes

» Computer cluster consists of nodes
o each node has specific task(s)

1010

1010

> Login nodes
o access to cluster
o edit & submit jobs
o small compilations

» Compute nodes
o actual computations

[Login section]

Compute section

[Storage section]

[Admin section]

Connecting to the cluster — Using SSH

> You need: Cluster Hostname of login node
o V5C account name: vSC2xxxx Vaughan login-vaughan.hpc.uantwerpen.be
o Hostname of a login node
o Private key
Leibniz login-leibniz.hpc.uantwerpen.be
> Restricted public access login.hpc.uantwerpen.be
o outside of Belgium: use VPN
= vpn.uantwerpen.be
= |Instructions on Pintra (staff)
Breniac login-breniac.hpc.uantwerpen.be

or Studentportal (students)

https://vpn.uantwerpen.be/

Connecting to the cluster — Using SSH

> Login via secure shell
o if your private key has the standard filename (~/.ssh/id_rsa)

$ ssh vsc2xxxx@login.hpc.uantwerpen.be

o otherwise, explicitly specify the filename

$ ssh -1 ~/.ssh/id_rsa_vsc vsc2xxxx@login.hpc.uantwerpen.be

& Text-mode access using OpenSSH

mailto:vsc2xxxx@login.hpc.uantwerpen.be
https://docs.vscentrum.be/access/text_mode_access_using_openssh.html

Using an SSH configuration file

Host * —— for all hosts
ServerAlivelnterval 60 o (try to) keep the connection alive
Match final User vsc2xxxx - When connecting as user vsc2xxxx
IdentityFile ~/.ssh/id_rsa_vsc o use this private key

Host calcua ————> create a shorthand “calcua

HostName login.hpc.uantwerpen.be o use Iogin node login.hpc.uantwerpen.be
ForwardAgent yes o use agent forwarding
ForwardX11 yes o use X11 forwarding

» Put this file in ~/.ssh/config and then you can connect using: ssh calcua

& SSH config

https://docs.vscentrum.be/access/ssh_config.html

> Install the required software

» Create your VSC account
o Create a public/private key pair
o upload your public key

> Login to a CalcUA cluster via ssh

» Create a SSH configuration file
o feel free to choose your own shorthand name
o login using the shorthand name

VLAAMS
SUPERCOMPUTER
CENTRUM

. Vlaanderen

— .

HPC@UAntwerp mtroductlon

4 — Transfer your files to the cruster

< o VLAAMS
UPERCOMPUTER | /nnovative Computin
CENTRUM | for A Smarter F/andeé;s vscentrum.be

A typical workflow

Connect to the cluster

Transfer your files to the cluster

Select the software and build your environment
Define and submit your job

Wait while

» your job gets scheduled

» your job gets executed

» your job finishes

6. | Move your results

oA W

File systems and user directories

> /scratch/antwerpen/2xx/vsc2xxyy
o fast but temporary storage ($VSC_SCRATCH

(L

o highest performance - for large files
o local only, no backup

> /data/antwerpen/2xx/vsc2xxyy
o long-term storage [$VSC_DATA

o slower — for small files
o exported to other VSC sites

> /user/antwerpen/2xx/vsc2xxyy
o only for account configuration files ($VSC_HOME

o exported to other VSC sites

Block and file quota

» Block quota limits the size of data
> File quota limits the number of files

» Default values

File system Block quota File quota
S /scratch 50 GB 100 k
& /data 25 GB 100 k
t, /home 3 GB 20 k

o Show quota: at login or with the myquota command

» Note: on /scratch, the number of files corresponds to number of data chunk files
o 1 end-user created file can be spread over at most 8 data chunk files

©)

Transferring your files

» For simple file transfers: secure copy (SCP)
o copy from your local computer to the cluster

$ scp file.ext vsc2xxxx@login.hpc.uantwerpen.be:

o copy from the cluster to your local computer

$ scp vsc2xxxx@login.hpc.uantwerpen.be:file.ext .

» Need more features (e.g.. file browsing, resuming transfers, ...): use SFTP
o command-line: sftp

o any graphical sftp file manager of your choice

> We recommend Globus
o also has a command-line interface as well as a Python SDK

@ Data transfer on external computers

https://docs.vscentrum.be/data/transfer/external_computer.html

Globus data sharing platform

Z Globus web app
o web service to transfer large amounts of data between local computers and/or remote servers
o offers data sharing features (guest collections), connectors (for OneDrive), CLI interface

» HPC@UANtwerp collection: VSC UAntwerpen Tier2
o login with UAntwerp or VSC account
o access to /data and /scratch

» Transfer between: local computer (laptop/desktop) «— remote server
o required software: Globus Connect Personal
o transfers will be resumed automatically

> Direct transfer: remote server «— remote server
o initiated from your local computer

& Globus data sharing platform

https://app.globus.org/
https://www.globus.org/globus-connect-personal
https://docs.vscentrum.be/globus/index.html

Best practices for file storage

» The cluster is not for long-term file storage
o move back your results to your laptop or server in your department
o backup exists for /user and /data
o old data on /scratch can be deleted if scratch fills up

> Cluster is optimised for parallel access to large files
o not for tons of small files (e.g., one per MPI process)

» Request more quota
o block quota — without too much motivation
o file quota - you will have to motivate why you need more files

> Note: text files are good for summary output, or data for a spreadsheet,
but not for storing 1000x1000-matrices — use binary files for that!

» Copy some files between your laptop and CalcUA

o feel free to use either command-line tools (scp and/or sftp) or a graphical client

o check on which clusters these files are available

» Copy the files back using the Globus web app
o download and install Globus Connect Personal
o good practice: configure it to use a dedicate subdirectory of your choice

o initiate the transfer back to your laptop
= ook at the options

. Vlaanderen

—

HPC@UAntwerp mtroductlon

5 — Select the software and
build your environment

< o VLAAMS
UPERCOMPUTER | /nnovative Computin
CENTRUM | for A Smarter F/andeé;s vscentrum.be

A typical workflow

Connect to the cluster

Transfer your files to the cluster

Select the software and build your environment
Define and submit your job

Wait while

» your job gets scheduled

» your job gets executed

» your job finishes

6. | Move your results

oA wN

System software

» Operating system: Rocky Linux — currently, version 8.10 — note: upgrade to 9.x is pending
o Red Hat Enterprise Linux (RHEL) clone
o Installed on all CalcUA clusters: Vaughan, Leibniz and Breniac
= All clusters are kept in sync as much as possible

» Resource management and job scheduler: Slurm
> Software build and installation framework: EasyBuild R

» Environment modules system: Lmod

EasyBuiLp

building software

') Rocky Linux™ ¢

an open enterprise operating system workload manager I-md

n
C
ﬂ
=

https://rockylinux.org/
https://slurm.schedmd.com/
https://easybuild.io/
https://lmod.readthedocs.io/

Development software

» C/C++/Fortran compilers
o Intel oneAPI and GCC
o With OpenMP support

> Message passing libraries
o Intel MPI, Open MPI

» Mathematical libraries
o Intel MKL, OpenBLAS, FFTW, MUMPS, GSL, ...

> File formats and data partitioning
o HDF5, NetCDF, Metis, ...

> Scripting and programming languages
o Python, Perl, ...

Application software

» Quantum Chemistry / Computational Chemistry / Electronic Structure Calculations
o ABINIT, CP2K, QuantumESPRESSO, VASP, Gaussian, ORCA, NWChem, OpenMX, Siesta

> Molecular Dynamics (MD) and Biomolecular Simulation
o GROMACS, NAMD, AMBER, LAMMPS, : , Tinker,

» Computational Fluid Dynamics (CFD) — TELEMAC, OpenFOAM

> Optimization and Operations Research — Gurobi,

» Bloinformatics / Computational Biology — BLAST, Bowtie, Guppy,

» Pharmacokinetics / Pharmacodynamics Modeling — MonolixSuite

» Data Analysis / Statistical Computing / Scientific Computing — MATLAB, R, Python (SciPy/NumPy), Julia

» Machine Learning / Al / Deep Learning Frameworks — TensorFlow, PyTorch, Scikit-learn

Licensed software

» VSC or campus-wide license
o e.g.. MATLAB, Mathematica, Maple, MonolixSuite, ...
o restrictions may apply if you don’'t work at UAntwerp
= institutions that have access (ITG, VITO) and companies

» Other restricted licenses
o e.g.. VASP, Gaussian, ...

= typically paid for by research groups (or individual users)
= sometimes just other license restrictions that must be respected
o access controlled via group membership
= talk to the owner of the license first
= request group membership via the VSC account page (“New/Join group”)
= the group moderator will grant or refuse access

https://account.vscentrum.be/

Software installation and support

> Installed in /apps/antwerpen
o preferably built and installed using EasyBuild
o often multiple versions of the same package

> Additional software — installed on demand
o system requirements should be met
o provide building instructions (no rpm/deb packages)
= js the software supported by EasyBuild?
o commercial software must have a cluster-use license
o assist in testing — we can’t have expertise in all domains

» Limited (compilation) support
o best effort, no code fixing
o many packages are tested with only one compiler

https://docs.easybuild.io/version-specific/supported-software/

Selecting software

» Using modules
o dynamic software management
o no version conflicts
o automatically loads required dependencies
o sets environment variables
» generic — $PATH, $LD_LIBRARY_PATH, ...
= gpplication-specific — $PYTHONPATH, ...
= EasyBuild related — $EBROOT...

» Module naming scheme

<name of software>/<version>[-<toolchain info>][-<additional info>]

= toolchain = bundle of compiler + compatible MPI and math libraries
= additional information: used to distinguish between versions

VLAAMS
SUPERCOMPUTER
CENTRUM

Toolchains

» Toolchain = bundle of compiler + compatible MPI and math libraries

o intel - Intel & GNU compilers, Intel MPI and MKL libraries
o foss — GNU compilers, Open MPI, OpenBLAS, FFTW, ...

» Subtoolchains — not including MPI or mathematical libraries
o gfbf = GCC + FlexiBLAS + FFTW
o GCC = GCCcore + binutils
o GCCcore

» System toolchain — system compilers (installed as part of the OS)

> Refreshed yearly — 20243, , 20233,

o offers more recent versions of the components

2 Overview of common toolchains

, 20223, ...

https://docs.easybuild.io/common-toolchains/

CalcUA modules

» Used to group software installed in the same time frame

CalcUA module Software collection

calcua/2024a version 2024a of the toolchain compiler modules
+ software built with them

calcua/system software built with system compilers

calcua/x86_64 software installed from binaries (x86_64)

calcua/all all currently available software

> Good practice: always load a calcua module first!

Using modules

» One command for searching, loading and unloading modules: module

$ module av openfoam Show/search available modules
 depends on currently loaded calcua module

$ module spider openfoam Show/search installed modules
* also includes extensions (e.g., Python packages, ...)
$ module spider Display additional information about a specific module
openfoam/11-foss-2023a
$ module load Load a specific version of a module
OpenFOAM/11-foss-2023a * advise: explicitly specify name & version

e case-sensitive

$ module list List all loaded modules

Best practices for using modules

$ module purge Unload all modules — start from a clean environment
* removal of a sticky module using --force

$ module load calcua/2023a Load appropriate calcua module first
* makes the modules available (here, from 2023a)

$ module load Load the modules you want to use
OpenFOAM/11-foss-2023a * advise: explicitly specify name & version

> Advice: do not load modules in your .bashrc
o consider using module collections instead — subcommands: save, savelist, describe, restore

& Module system basics
2 User’s Tour of the Module Command

https://lmod.readthedocs.io/en/latest/010_user.html
https://docs.vscentrum.be/software/module_system_basics.html
https://lmod.readthedocs.io/en/latest/010_user.html

» Which software are you going to use?

o can you find which versions we have?

o if we do not have it, is it supported by EasyBuild?
= yes — let us know

= no — look for instructions & let us know

» Use our advice to load the modules
o start from a clean environment
o load an appropriate calcua module

o load the module you want to use

> Try out saving and restoring a module collection

. Vlaanderen

HPC@UAntwerp mtroductlon

' /

6 — Define and submit your job

VLAAMS

SUPERCOMPUTER | innovative Computin
CENTRUM | for A Smarter F/andeé;s vscentrum.be

A typical workflow

Connect to the cluster

Transfer your files to the clusters

Select the software and build your environment
Define and submit your job

Wait while

» your job gets scheduled

» your job gets executed

» your job finishes

6. | Move your results

s wN

Running batch jobs

» Running computations — batch jobs
o script with resource specifications

> Submitted to a queueing system

o managed by a resource manager
SLURM

> Next job selected by a scheduler scheduler l

o ina fair way — fair share
o based on available resources
o & scheduling policies

» Remember:
o a cluster is a shared infrastructure
o jobs might not start immediately

= (Connected here

Want to compute
here (run jobs)

Other users will
also have jobs
running here

Job submission workflow

#!/bin/bash

#SBATCH -o stdout.%]
#SBATCH -e stderr.%j
module purge

module load calcua/all
module load MATLAB

matlab -r fibo

Job script

Users

—

Submit jobs
Query the cluster

()
Scheduler plugin «—
Scheduling policy
. e Resource o
Partition T H
manager 20 a0,
manager a0 888g,,
(server) 5 I m
\ waorkload managerj
Resource Resource Resource Resource
manager manager manager manager
(client) (client) (client)

Job script example

» Start with shebang line #!/bin/bash

> Request resources + give instructions #SBATCH --ntasks=1 --cpus-per-task=1
= first block #SBATCH --time=0:10:00
= start with #SBATCH #SBATCH --account ap_course_hpc_intro

#SBATCH --partition=zen2
#SBATCH --output stdout.%]
#SBATCH --error stderr.%]

» Load relevant modules module purge

o module load calcua/2024a
module load Python/3.12.3-GCCcore-13.3.0

» Actual computation commands python pi.py

Important Slurm concepts

Node
Core

CPU

Partition
Job
Job step

Task

Compute node
Physical core

Virtual core — hardware thread
* on the CalcUA clusters, hyperthreading is disabled — CPU = Core

Group of nodes with job limits and access controls — aka job queue
Submitted job script — resource allocation request

Set of (possibly parallel) tasks within a job
* the job script itself is a special step — the batch job step

Corresponds to a (single) Linux process, executed in a job step
- a single task can not use more CPUs than available in a single node

Slurm resource requests — Overview

Long option

--ntasks=<number>
--cpus-per-task=<ncpus>
--mem-per-cpu=<amount><unit>
--time=<time>
--account=<agp_proj>
--partition=<pname>
--switches=<count>
--job-name=<jobname>
--output=<outrile>
--error=<errfile>
--mail-type=<type>

--mail-user=<email>

Short option

-n

-C

<number>

<ncpus>

<time>
<ap_proj>

<pnhame>

<jobname>
<outfile>

<errfile>

Description

Number of tasks

Number of CPUs per task
Amount of memory per CPU
Time limit (wall time)
Project account to use
Partition to submit to

Max count of leaf switches
Name of the job

Redirect stdout

Redirect stderr

Event notification (start, end, ..

Email address

Slurm resource requests — Project account

Long option Short option Job environment variable

--account=<agp_proj> -A <gp_proj> SLURM_JOB_ACCOUNT

Description

Project account to use

» Required to specify a project account at CalcUA clusters
o accounting for both compute (jobs) and storage (files)
o ask your supervisor or project account manager to get access
o use an appropriate account according to the project

» Show accounts you have access to myprojectaccounts
o all project accounts start with ap_
o during this course — ap_course_hpc_intro

& Accounting @ CalcUA

https://www.uantwerpen.be/en/research-facilities/calcua/support/accounting/

Slurm resource requests — Tasks & CPUs per task

Long option Short option Job environment variable Description
--ntasks=<number> -n <number> SLURM_NTASKS Number of tasks
--cpus-per-task=<ncpus> -Cc <ncpus> SLURM_CPUS_PER_TASK Number of CPUs per task

» Specify number of (parallel) tasks and CPUs (cores) per task
o Task = single process

o CPUs per task — number of computational threads for a task
» Note: CPUs per task can never exceed the number of cores per node

> If not set, default = 1task & 1 CPU

Slurm resource requests — Memory per CPU

Long option Job environment variable Description
- -mem-per-cpu=<amount><unit> SLURM_MEM_PER_CPU (in megabytes) Amount of memory per CPU

> Memory per CPU
o unit = kilobytes (k), megabytes (m) or gigabytes (g)
o amount = integer — 3.75g is invalid, use 3840m instead

> If not set, default = maximum available memory per requested CPU

» Note: if requesting more than maximum available per CPU — number of CPUs will be increased

> Note: on CalcUA clusters, per node 16 GB is reserved for the OS and file system buffers

Slurm resource requests — Wall time

Long option Short option Job environment variable Description
--time=<time> -t <time> SLURM_JOB_START_TIME Time limit = wall time

SLURM_JOB_END_TIME

» Formats : mm | mm:ss | hh:mm:ss | d-hh | d-hh:mm | d-hh:mm:ss
o d =days, hh = hours, mm = minutes, ss = seconds

> Maximum time limit
o compute nodes: 3 days (Vaughan, Leibniz), 7 days (Breniac)
o GPU nodes: 1 day

> Wall time exceeded — job will be killed
> Wall time > maximum — job will not start

> If not set, default = 1 hour

Slurm resource requests — Partitions

Long option Short option Job environment variable Description
--partition=<pname> -p <pname> SLURM_JOB_PARTITION Partition to submit to

» Partition = group of nodes
o access controls and scheduling policies
o job defaults & resource limits

> If not set, use the default partition defined per cluster
o note: job does not get automatically assigned to the optimal partition

2 UAntwerp Tier-2 Infrastructure

https://docs.vscentrum.be/antwerp/tier2_hardware.html

CalcUA clusters — Partitions and node information

Cluster Partition # Specifications

Vaughan zen2 152 AMD Zen 2, 256 GB RAM
zen3 28 AMD Zen 3, 256 GB RAM
zen3_512 12 AMD Zen 3, 512 GB RAM
ampere_gpu 1 Zen 2, NVIDIA Ampere GPUs
arcturus_gpu 2 Zen 2, AMD Arcturus GPUs

Leibniz broadwell 144 Intel Broadwell, 128 GB RAM
broadwell.256 8 Intel Broadwell, 256 GB RAM
pascal_gpu 2 Broadwell, NVIDIA Pascal GPUs

Breniac skylake 23 Intel Skylake, 192 GB RAM

» bold = default partition for the corresponding cluster

CPU - GPU

64 CPU
64 CPU
64 CPU

4 GPU - 64 CPU
2 GPU - 64 CPU

28 CPU
28 CPU

2 GPU - 28 CPU

28 CPU

Mem per CPU

3.75 GiB — 3840m
3.75 GiB — 3840m
7.75 GiB — 7936m

3.75 GiB — 3840m
3.75 GiB — 3840m

4 GiB — 4096m
8,5 GiB — 8704m

4 GiB - 4096m

6.29 GiB — 6436m

Max WT

3 days

1 day

3 days

1day

7 days

> And now it’s time to run your first job — finally!
o start by cloning our repository for this course

git clone https://github.com/hpcuantwerpen/intro-hpc

» Create a small job script which
= uses the correct project account — for this course
= needs 1 core, has a wall time of 10 minutes, and will run on the zen2 partition
= |oads the module vsc-tutorial/202203-intel-2024a — according to our advice
= executes a “hello world” script by using the command: serial_hello

> Submit your first job
o submit the job — use shatch — you get a job id
o be patient, the job will start soon — check the job status using squeue
o look at what happens - e.g.: which file are generated?

https://github.com/hpcuantwerpen/intro-hpc

Slurm resource requests — Faster communication

Long option Description
--switches=1 Request all nodes to be connected to a single switch

» Node communication through network switches
o Nodes are grouped on edge switches which are connected by top switches
= hence communication/traffic between two nodes passes through either 1 or 3 switches

» Some programs are latency-sensitive
o Will run much better on nodes which are all connected to a single (edge) switch

> Note: using this option might increase your waiting time

Slurm resource requests — Exclusive node access

Long option Description
--exclusive Request exclusive access to the node for the job

> Nodes are shared resources
o if you don’t request all cores, remaining cores might be used by another user
o if you submit multiple jobs, those might end up on the same or on different nodes

> Sometimes it is better to request exclusive access to the compute nodes
O

o prevents sharing of allocated nodes with other jobs

> Be aware, you will be charged for a full node

Slurm resource requests — Number of nodes

Long option Short option Job environment variable Description
- -nodes=<number> -N <number> SLURM_JOB_NUM_NODES Number of nodes

» For each task, all of the CPUs for that task are allocated on a single compute node
o but different (parallel) tasks might end up on either the same or different compute nodes
o depends on what is already running on these nodes

> Advice: bundle tasks from the same job on as few nodes as possible
o to make the communication latency between tasks as small as possible

» Specify the number of nodes the job may use

o note: also possible to specify a min/max number of nodes using --nodes=<min>-<max>

Non-resource-related options — Job name

Long option Short option Job environment variable

--job-name=<jobname> -J <jobname> SLURM_JOB_NAME

Description
Name of the job

> Assign a name to your job — the job name
o job name can be used when defining the output and error files

> If not given, the default name = name of the batch job script

Non-resource-related options — Redirect stdout / stderr

Long option Short option Description
--output=<outrile> -0 <outfile> Redirect stdout
--error=<errfile> -e <errfile> Redirect stderr

> By default = redirect both stdout and stderr — slurm-<jobid>.out
o that file is present as soon as the job starts and produces output

> If only --output is given — redirect both stdout and stderr

> Possible to use filename patterns to define the filename
o examples: %x for the job name, %j for job id, ...

2 Filename patterns

https://slurm.schedmd.com/sbatch.html

Non-resource-related options — Mail notifications

Long option Description
--mail-type=<type> Event notification (start, end, ...)
--mail-user=<email> Email address

» The scheduler can send you a mail when a job begins (starts), ends or fails (gets aborted)
o type = BEGIN | END | FAIL | ALL

» default email address = linked to your VSC-account

The job runtime environment

» On UAntwerp clusters, we only set a minimal environment for jobs by default

o equivalent to exporting only these environment variables

--export=HOME,USER, TERM, PATH=/bin:/sbin

o hence you need to (relbuild a suitable environment for your job

> Other available environment variables include

o VSC_* — for user directories, but also for cluster/os/architecture
o EB¥ + module specific variables — defined by loading modules
o SLURM_* variables — set by Slurm (next slide)

& The job environment

https://docs.vscentrum.be/jobs/job_submission.html

The job runtime environment

> Slurm defines several variables when a job is started
o these can be used when calling programs — e.g.: to pass the number of available CPUs
o some are only present if explicitly set

Environment variable Explanation

SLURM_SUBMIT_DIR The directory from which sbatch was invoked
SLURM_JOB_ACCOUNT Account name selected for the job
SLURM_JOB_NUM_NODES Total number of nodes for the job
SLURM_JOB_NODELIST List of nodes allocated to the job

SLURM_JOB_CPUS_PER_NODE CPUs available to the job on this node

SLURM_TASKS_PER_NODE Number of tasks to run on this node

& Output environment variables

https://slurm.schedmd.com/sbatch.html

Part 2 — Sneak preview

> In Part 1, you learned how to
o connect to the cluster and transfer your files
o use modules and setup your job environment
o properly specify your resource requests
o write and submit your job scripts

> In Part 2, you will learn
o more about the Slurm commands and how to use them
o the different types of multi-core parallel jobs
o how to organize your job workflows
o running large number of jobs
o and some best practices

/
?% Vlaanderen
(is supercomputing

e

S .) - ¥)
>]\

HPC@UAntwerp mtroductlon

Ine Arts, Franky BackeIJauw Stefan Becuwe, Bert Jorlssen Kurt Lust,
Carl Mensch, Michele Pugno, Bert Tijskens, Robin Verschoren

Version Spring 2025 — Part 2

< o VLAAMS
UPERCOMPUTER | /nnovative Computin
CENTRUM | for A Smarter F/andeé;s vscentrum.be

Table of contents — Part 2

7. Slurm commands 9. Organizing job workflows
* sbatch : submit a batch script ¢ Examples of job workflows
 squeue : check the status of your jobs + Passing (environment) variables to job scripts
 scancel : cancel a job * Passing command line arguments to job scripts
* sinfo : get an overview of the cluster and partitions * Job dependencies

* sstat and sacct : information about jobs . . o« e
) 10. Multi-job submission

 scontrol : view Slurm configuration and state _ ,
¢ Running a large batch of small jobs

* srun :run parallel tasks
, Jobs arrays and atools
* salloc : create a resource allocation

« sstat and sacct : information about jobs 11. Extra topics

8. Multi-core parallel jobs * Running an interactive job

* Why parallel computing?

* Types of parallel computing

* Running a shared memory job
* Running a distributed memory job 12. Final notes
* Running a hybrid OpenMP/MPI job

* Job monitoring

* Using the visualisation node
¢ Installing your own software and packages
* Using (Apptainer) containers

VIaanderjen

HPC@UAntwerp mtroductlon

~

7 — Slurm commands I Y

< o VLAAMS
UPERCOMPUTER | /nnovative Computin
CENTRUM | for A Smarter F/andeé;s vscentrum.be

Slurm commands — Overview

Command
—_ sbatch
&® srun
% salloc
squeue
@ scancel
i sstat

,O sacct
o sinfo

scontrol

:?I“

Description

Submit a batch script
Run parallel tasks — start an interactive job

Create a resource allocation
Check the status of your jobs
Cancel a job
Information about running jobs
Information about (terminated) jobs
Get an overview of the cluster, partitions and nodes

View current Slurm configuration and state

sbatch — Submit a batch script

> sbatch <sbatch arguments> jobscript <arguments of the job script>

o does not wait for the job to start or end
o can also read the job script from stdin instead

» What sbatch does:
o submits the job script to the selected partition (aka job queue)
o returns Submitted batch job <jobid>

» What Slurm does — behind the scenes
o creates an allocation when resources become available
o Ccreates batch job step in which it runs the batch script

A

sbatch — Submit a batch script

» To pass resource (and non-resource) requests
o add #SBATCH comment lines at the beginning of your job scripts

o use environment variables beginning with SBATCH_
= followed by the name of the matching command line option

= can be useful if you have access to only one project account
= overrules #SBATCH lines

o on the command line as options to sbatch
= overrules both #SBATCH and SBATCH_s

& sbatch manual page

https://slurm.schedmd.com/sbatch.html

squeue — Check the status of your jobs

> squeue checks the status of your own jobs in the job queue

$ squeue
JOBID PARTITION NAME USER ST
26170 zen2 bash vsc20259 R

o ST = state of the job

ST

PD
CF
R
CD

Explanation ST
Pending — waiting for resources F

Configuring — nodes becoming ready TO
Running OOM
Successful completion — exit code zero NF

& squeue manual page — job state codes

TIME NODES NODELIST(REASON)
6:04 1 r1c@2cn3.vaughan

Explanation

Failed job — non-zero exit code
Timeout — wall time exceeded

Job experienced out-of-memory error

Job terminated due to node failure

https://slurm.schedmd.com/squeue.html
https://slurm.schedmd.com/squeue.html

squeue — Check the status of your jobs

> squeue checks the status of your own jobs in the job queue

$ squeue
JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)
26170 zen?2 bash vsc20259 R 6:04 1 r1c@2cn3.vaughan

o NODELIST(REASON) = reason why a job is waiting for execution

NODELIST(REASON) Explanation
Priority There are one or more higher priority jobs in the partition

Q0SMaxNodePerUserLimit The limit on the maximum number of nodes per user will be exceeded
AssocMaxJobsLimit The limit on the number of running jobs for each user has been reached

JobHeldAdmin The job is held by an administrator

& job reason codes

https://slurm.schedmd.com/squeue.html

scancel — Cancel a job

> scancel <jobid> cancels a single job + all its job steps

o cancel a specific job step: scancel <jobid>.<stepid>

= e.g., if you suspect a job step hangs, but you still want to execute
the remainder of the job script to clean up and move results

o cancel a (subljob of a job array: scancel <jobid>_<arrayid>

» Some other possibilities
o --state <state> or -t <state> .cancel only jobs with given state
= J{state> = pending, running, or suspended
o --partition <part> or -p <part>:cancel only jobs in given partition

& scancel manual page

https://slurm.schedmd.com/scancel.html

sinfo — Get an overview of the cluster

» sinfo shows information about the partitions and their nodes in the cluster

$ sinfo

PARTITION AVAIL TIMELIMIT NODES STATE NODELIST

zen?2 up 3-00:00:00 38 mix r1c@lcnl.vaughan,
zen?2 up 3-00:00:00 112 alloc r1c@1cn2.vaughan,
zen?2 up 3-00:00:00 1 idle r4c@5cn2.vaughan
zen3 up 3-00:00:00 24 idle~ r6c@1cnl.vaughan,
broadwell up 3-00:00:00 2 down~ r2c08cnl.leibniz,
ampere_gpu up 1-00:00:00 1 idle nvaml.vaughan

o show number of node is state allocated / mixed / idle / down
o note: ~ =the node is in powersave mode

sinfo — Get an overview of the cluster

» Show info per node

$ sinfo -N -1 -n ré6c@1cn4.vaughan,ric@2cn3.leibniz,amdarc2.vaughan

NODELIST NODES PARTITION STATE CPUS S:C:T MEMORY
amdarc?2.vaughan 1 arcturus_gpu idle 64 2:32:1 245760
ric02cn3.leibniz 1 broadwell allocated 28 2:14:1 114688
rec@lcn4.vaughan 1 zen3 idle~ 64 2:32:1 245760

o MEMORY = total amount of memory that can be allocated on the node (in kilobytes)
o S:C: T = structure of the node — sockets / cores / (hardware) threads

& sinfo manual page

https://slurm.schedmd.com/sinfo.html

scontrol — View Slurm configuration and state

» scontrol view Slurm configuration and state

» Show information about:

o jobs: scontrol -d show job <jobid>
= shows CPU_IDs of CPUs assigned to the job

o partitions: scontrol show part [<part>]

o Slurm configuration: scontrol show config

> Inside a job script to:

o get a list of node names one per line: scontrol show hostnames
= $SLURM_JOB_NODELIST contains the same list but separated by commas

& scontrol manual page

O
I

¥
R

https://slurm.schedmd.com/scontrol.html

srun — Run parallel tasks

> srun “Swiss Army Knife” to create & manage (parallel) tasks within a job

o in Slurm terminology: it creates a job step that can run one or more parallel tasks
o run multiple jobs steps simultaneously, each using a part of the allocated resources
o the better way of starting MPI programs — preferred over mpirun and mpirun

o run a command on all allocated nodes of a running job:
srun --jobid <jobid> --overlap --pty bash
o run a shell on the first allocated nodes of a running job:

srun --jobid <jobid> --interactive --pty bash

& srun manual page

https://slurm.schedmd.com/srun.html

salloc — Create a resource allocation

» salloc creates a resource allocation

> What salloc does — behind the scenes
o requests the resources and waits until they are allocated
o then start a shell on the node where you executed salloc
o afterwards, releases the resources

» Important: the shell is not running on the allocated nodes!
o but, from the shell, you can start job steps on the allocated resources using srun

& salloc manual page

https://slurm.schedmd.com/salloc.html

sstat — Information about running jobs l|||

> sstat -j <jobid>[.<stepid>] shows real-time information about a job or job step

o it is possible to specify a subset of fields to display using the -o, --format or --fields option.

> Get an idea of the load balancing (for an MPI job)

$ sstat -a -j 12345 -o JobID,MinCPU,AveCPU
JobCPU MinCPU AveCPU

12345.extern 00:00.000 00:00.000

12345.batch 00:00.000 00:00.000

12345.0 22:54:20 23:03:50

o shows the minimum and average amount of consumed CPU time for all job steps

= interpretation: here, step O is an MPI job, and we see that the minimum CPU time consumed by the task
is close to the average, which indicates that the job is running properly and that the load balance is ok

sstat — Information about running jobs

» Checking memory usage

$ sstat -a -j 12345 -o JobID,MaxRSS,MaxRSSTask,MaxRSSNode
JobID MaxRSS MaxRSSTask MaxRSSNode

12345 .extern

12345 .batch 4768K ® ricoben3.+
12345.0 708492K 16 rlcob6en3.+

o provides a snapshot of the job’s real memory usage — RSS = Resident Set Size

= gives an insight into how much of the requested memory the job is actively using

» interpretation: the largest process in the MPI job step is consuming roughly 700MB
at this moment, and it is task 16 and running on compute node ricO6cn3.vaughan

& sstat manual page

https://slurm.schedmd.com/sstat.html

sacct — Information about (terminated) jobs p

» sacct shows information kept in the job accounting database

o e.g.. job start/end times, resource usage, job status, user/account details, ...
o useful for monitoring, billing, performance analysis, ...
o note: for running jobs the information may enter only with a delay

$ sacct -j 12345

JobID JobName Partition Account AllocCPUS State ExitCode
12345 NAMD-S-00+ zen2 antwerpen+ 64 COMPLETED 0:0
12345 .batch batch antwerpen+ 64 COMPLETED 0:0
12345.extern extern antwerpen+ 64 COMPLETED 0:0
12345.0 namd?2 antwerpen+ 64 COMPLETED 0:0

sacct — Information about (terminated) jobs

> Retrieving job details

o get an overview for jobs in a given time range

sacct -S <start-datetime> -E <end-datetime> -X
= datetime format: YYYY-MM-DD[THH:MM[:SS1]

o get (all) the details of a given job
sacct -j <jobid> -o ALL -X

o get the batch script of a given job
sacct -j <jobid> -B

& sacct manual page

https://slurm.schedmd.com/sacct.html

» Given the incomplete job script matrix.slurm, which compiles and runs matrix_multiply.c

o make these changes to the job script
= add the project account to the jobscript — use ap_course_hpc_intro
request 1 task with 10 cores
change the output and error formats to be <job_name>.<job-id>.out
send yourself an email when the job is finished
add a 300 second sleep at the end of the script — so it stays in the queue for a while longer

o submit the jobscript
= while the job is running, try several of the Slurm commands - squeue / sstat / sacct
= what information is stored in the accounting database? — sacct

> Our repository for this course: https://github.com/hpcuantwerpen/intro-hpc

https://github.com/hpcuantwerpen/intro-hpc

Vlaanderen

is supercomputing

HPC@UAntwerp mtroductlon

8 — Multi-core parallel jobs

VLAAMS

SUPERCOMPUTER | innovative Computin
CENTRUM | for A Smarter F/andeé;s vscentrum.be

Why parallel computing?

» Faster time to solution
o distributing code over N cores
o hope for a speedup by a factor of N

» Larger problem size
o distributing your code over N nodes
o increase the available memory by a factor N
o hope to tackle problems which are N times bigger

» In practice
o gain limited due to communication, memory overhead, sequential fractions in the code, ...
o optimal number of cores/nodes is problem-dependent
o but, no escape possible — computers don’t really become faster for serial code

> Parallel computing is here to stay!

Types of parallel computing

1. Multithreading
o shared memory
o OpenMP

2. Multiprocessing
o distributed memory
o MPI

3. Hybrid
o combination

@ Compute node
Processor (socket)
B Core (=CPU)
Memory

Types of parallel computing

1. Multithreading
o Sshared memory
o OpenMP

2. Multiprocessing
o distributed memory
o MPI

3. Hybrid
o combination

B Active core
B Inactive core

BElEE
EEIEE

OpenMP software uses multiple or
all cores in a single node
e.g. 24 threads within 1 node

MPI software can use (all) cores

in multiple nodes
e.g. 8 tasks spread over 2 nodes

Hybrid OpenMP/MPI software
e.g. 6 threads per task

& 8 tasks over 2 nodes

(each task stays within 1 node)

Running a shared memory job — Multithreading

» Shared memory job = single task with multiple CPUs per task
o all threads for the task run on within a single node @ E

> Tell the program how many threads it can use

o depends on the program - e.g.: for MATLAB, use maxNumCompThreads(N)

o many OpenMP programs use the environment variable OMP_NUM_THREADS

o for MKL-based code/operations, use MKL_NUM_THREADS
o for OpenBLAS (FOSS toolchain), use OPENBLAS_NUM_THREADS

» Check the manual of the program you use!
o e.g., NumPy has several options (depending on how it was compiled)

Running a shared memory job — Multithreading

» OpenMP example script

Ve

g
#!/bin/bash

#SBATCH --job-name=0penMP-demo
#SBATCH -A ap_course_hpc_intro
#SBATCH --ntasks=1 --cpus-per-task=64
#SBATCH --mem-per-cpu=2g

module --force purge
module load calcua/2024a

module load vsc-tutorial/202203-intel-2024a

export OMP_NUM_THREADS=$SLURM_CPUS_PER_TASK
export OMP_PROC_BIND=true
omp_hello

generic-omp.slurm F—\

.

«— 1 task with 64 CPUs (so 64 threads)
«— 2 GB per CPU, so 128 GB total memory

«— load the calcua module

«— load vsc-tutorial — also loads the Intel
toolchain (for the OpenMP run time)

«— set the number of (OpenMP) threads to use

«— threads stay on the core where they're created

«— run the program

Running a distributed memory job — MPI

> Distributed memory job = several tasks running in parallel
o the tasks can be spread over multiple (different) nodes @ @ ao @ E
LT)1

o communication — message passing interface (MPI) C 1) 1]

» Every distributed memory program needs a program starter
o some packages use system starter internally
o mpirun works, but depends on variables set in the intel modules

o the preferred program starter for Slurm = srun
= knows how Slurm distributes processes
= needs no further arguments if resources are correctly requested

o Check the manual of the program you use!
= is there an option to explicitly set the program starter?

Running a distributed memory job — MPI

> (Intel) MPI example script

Ve

-

#!/bin/bash

#SBATCH --job-name mpihello

#SBATCH -A ap_course_hpc_intro
#SBATCH --ntasks=128 --cpus-per-task=1
#SBATCH --mem-per-cpu=1g

module --force purge
module load calcua/2024a

module load vsc-tutorial/202203-intel-2024a

srun mpi_hello

generic-mpi.slurm F—\

.

«— 128 MPI processes (uses 2 nodes on Vaughan,
or 5 nodes on Leibniz/Breniac)

«— load the calcua module

«— load vsc-tutorial — also loads the Intel
toolchain (for the MPI libraries)

< run the MPI program — srun communicates
with the resource manager

Running a hybrid OpenMP/MPI job

» Hybrid job = combination of OpenMP and MPI @ @ PN E @

» No additional tools needed to start hybrid programs S G T

o srun does all the miracle work
= or mpirun in Intel MPI — provided the environment is set up correctly

Running a hybrid OpenMP/MPI job

f

/#!/bin/bash

#SBATCH --job-name hybrid_hello
#SBATCH -A ap_course_hpc_intro
#SBATCH --ntasks=8 --cpus-per-task=16
#SBATCH --partition=zen2 --nodes=2

module --force purge
module load calcua/2024a
module load vsc-tutorial/202203-intel-2024a

export OMP_NUM_THREADS=$SLURM_CPUS_PER_TASK
export OMP_PROC_BIND=true

srun -c¢ $SLURM_CPUS_PER_TASK mpi_omp_hello

_

L»generic—hybrid.slurm:}—\

< 8 MPI processes with 16 threads
«— make sure the job uses 2 Vaughan compute
nodes (to avoid cluttering)

«— load the software stack module
«— load vsc-tutorial — also load
the Intel toolchain
< set the number of (OpenMP) threads to use
«— threads stay on the core where they’re created

<« run the MPI program (mpi_omp_hello)
srun does all the magic

Job monitoring — Commands for interactive monitoring

> When your job is running
o how do | know how much memory my job is using?
o how can | check if my job is running properly, i.e. using the allocated CPUs?

» While your job is running, you can log on to the compute nodes assigned to that job
o check which compute nodes a job uses: squeue -j <jobid>
o log on to a compute node: ssh <compute-node>
o run a command on all nodes: srun --jobid <jobiad> --overlap <commana>

> When logged in on the compute node, check the behavior
o htop — core & memory usage
o sar — system performance metrics like CPU / memory / disk usage over time
o vmstat — monitors system memory / processes / CPU activity / 1/O statistics in real-time
o pstree — display a tree view of the running processes

Job monitoring — The monitor module

» Add monitoring in your job script
o sample a programs’ metrics — CPU usage and memory consumption

o can also check the sizes of (temporary) files
o only single node jobs are supported

» Usage examples:
o monitor -d 30 -n 20 -1 monitor.log <command>
= use a sample rate (delta) of 30 seconds, keep only the last 20 results, and log to a file
o monitor -f filel.tmp,file2.tmp <command>
= check the size of the (temporary) files
o monitor -d 60 -- matlab -nojvm -nodisplay computation.m
= delimit the monitor’s options

& Monitoring memory and CPU usage of programs
& Github repository for monitor

https://docs.vscentrum.be/jobs/monitoring_memory_and_cpu_usage_of_programs.html
https://github.com/gjbex/monitor

» Submit the parallel jobs from this section using the provided job scripts
o a shared memory (OpenMP) job: prime-omp.slurm
o a distributed memory (MPI) job: prime-mpi.slurm
o a hybrid OpenMP/MPI job: prime-hybrid.slurm

> While the jobs are running
o check where the job is running
o log on to the first node allocated to that job
o run the job monitoring commands
= is your job behaving properly?

> When your job finishes
o check the output files

. Vlaanderen

HPC@UAntwerp mtroductlon

9 — Organizing job workflows ;

VLAAMS

SUPERCOMPUTER | innovative Computin
CENTRUM | for A Smarter F/andeé;s vscentrum.be

Examples of job workflows

» Some scenarios

o run simulations using results of a previous simulation, but with a different number of nodes
= e.g., in CFD: first a coarse grid computation, then refining the solution on a finer grid

o perform extensive sequential pre- or postprocessing

o run a sequence of simulations, each depending on result of previous one
= what to do when the max. wall time is reached?

o run a simulation, apply perturbations to the solution
= then run subsequent simulations for each perturbation

» Workflow = order in which the jobs will be submitted or run

Passing (environment) variables to job scripts

» Remember: on UAntwerp clusters, only a minimal environment is passed to the job

» Variables need to be passed explicitly, otherwise sbatch will not see them
o propagate a value of (already existing) environment variables

sbatch --export=<myenvi>, <myenvZ2>

o pass a variable with given value to the job environment

sbatch --export=<myenv>=<value>

o note: SLURM_x variables are always propagated

Passing command line arguments to job scripts

» Command line arguments for the job script are passed after the name of the job script

o Create a test script .

e kget_parameter.slurm]—\
#!/bin/bash
#SBATCH --ntasks=1 --cpus-per-task=1
#SBATCH --mem-per-cpu=500m
#SBATCH --time=5:00

echo "Hello $1."
N Y,

o Now run
sbatch get_parameter.slurm people

o The output file will contain

Hello people.

Job dependencies

> You can instruct Slurm to start a job only
o when some (or all) jobs from list of jobs have ended
sbatch --dependency=afterok: <jobid>
o after a job has failed

sbatch --dependency=afternotok: <jobid>

» Useful to organize series of (subsequent) jobs
o powerful in combination with environment variables
o or command line arguments passed to job scripts

& the sbatch manual page - look for --dependency

https://slurm.schedmd.com/sbatch.html

Job dependencies — Example

> Use case: let’s transform this example
of sequential simulation runs into

o a job that runs the first simulation

o followed by a bunch of subsequent
perturbations that use the result of
the first simulation

Simulation }

[output=10

Perturbation 1 Perturbation 2
Simulation

Simulation
multiplier=5 multiplier=10

4 .
#!/bin/bash

N\

{job.slurm}“\

#SBATCH --ntasks=1 --cpus-per-task=1
#SBATCH --mem-per-cpu=1g
#SBATCH --time=30:00

echo "10" >outputfile ; sleep 300

multiplier=5

mkdir mult-$multiplier ; cd mult-$multiplier
resultFirst=$(cat ../outputfile)

echo $(($resultFirstx$multiplier)) >outputfile
cd ..

multiplier=10

mkdir mult-$multiplier ; cd mult-$multiplier
resultFirst=$(cat ../outputfile)

echo $(($resultFirstx$multiplier)) >outputfile

Job dependencies — Example

s . {job_first.slurm }\ o {job_depend.slurm}—\
#!/bin/bash !'/bin/bash
#SBATCH --ntasks=1 --cpus-per-task=1 #SBATCH --ntasks=1 --cpus-per-task=1
#SBATCH --time=10:00 #SBATCH --time=10:00
echo "10" >outputfile mkdir mult-$multiplier
cd mult-$multiplier

- J

resultFirst=$(cat ../outputfile)

> To automate the submission, store the echo $(($resultFirstx$multiplier)) >outputfile

job id of the first job in a variable and N)
pass it to the dependency options for
the subsequent jobs

[job_launch.sh:}\

-
#!/bin/bash
first=$(sbatch --parsable --job-name job_leader job_first.slurm)
sbatch -J job_mult_5 --export=multiplier=5 --dependency=afterok:$first job_depend.slurm

sbatch -J job_mult_10 --export=multiplier=10 --dependency=afterok:$first job_depend.slurm
N J

Job dependencies — Example

> After start of the first job, the other check will be in state PD (pending) — see with squeue

JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)
24869 zen2 job_mult vsc20259 PD 0:00 1 (Dependency)
24870 zen2 job_mult vsc20259 PD 0:00 1 (Dependency)
24868 zen2 job_lead vsc20259 R 0:25 1 r1c@lcni

> When the first job finishes successfully, the subsequent jobs will start running

JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)
24869 zen2 job_mult vsc20259 R 0:01 1 r1c@lcni
24870 zen2 job_mult vsc20259 R 0:01 1 r1c@lcni

> Finally, the output files will contain the proper results:

cat outputfile 10
cat mult-5/outputfile 50
cat mult-10/outputfile 100

Vlaanderen

is supercomputing

HPC@UAntwerp mtroductlon

.

10 — Multi-job submission -

VLAAMS

SUPERCOMPUTER | innovative Computin
CENTRUM | for A Smarter F/andeé;s vscentrum.be

Running a large batch of small jobs

» Scenario: you want to run many, many, many small (short/serial) jobs
o but: submitting and tracking many short jobs — burden on scheduler

> Solutions:
o Job arrays: submit a large number of related yet independent jobs at once
= to manage array jobs, use atools

o srun can be used to launch more tasks than requested in the job request
= running no more than the indicated number of tasks simultaneously

o worker framework: manages “embarrassingly parallel” computations in a single job

o GNU parallel: tool to easily run shell commands in parallel with different inputs

» Note: these independent (sub) jobs can also run simultaneously across multiple nodes

https://atools.readthedocs.io/en/latest/
https://github.com/gjbex/worker-ng
https://www.gnu.org/software/parallel/

Job arrays

» Starts from a job script for a single (sub) job in the array

s [job_array.slurm]——\
#!/bin/bash

#SBATCH --ntasks=1 --cpus-per-task=1
#SBATCH --mem-per-cpu=512M
#SBATCH --time 15:00

INPUT_FILE="input_${SLURM_ARRAY_TASK_ID}.dat" «— for every run, there is a separate input
OUTPUT_FILE="output_${SLURM_ARRAY_TASK_ID}.dat" file and an associated output file

./test_set _${SLURM_ARRAY_TASK_ID} -input ${INPUT_FILE} -output ${OUTPUT_FILE}
N J

» Specify the number of (sub) jobs in the array

sbatch --array 1-100 job_array.slurm

> Result: the program will be run for all input files

Job arrays - atools

> Features of atools
o provides a logging facility and commands to investigate the logs
= which items failed or did not complete — restart only those
o has limited support for Map-Reduce scenarios
= preparation phase — split up data in manageable chunks
= process all chunks in parallel
= postprocessing phase — combine the results

» atools versus worker
o atools is less efficient than worker for very small jobs

2 worker-and-atools

https://gjbex.github.io/worker-and-atools/

atools example — Parameter exploration

> The field names of the header in the CSV file are used as variables inside the job script

- [weather.slurm]——\ s [data.csv }_\

#!/bin/bash
#SBATCH --ntasks=1 --cpus-per-task=1 temperature, pressure, volume
#SBATCH --time=10:00 293.0, 1.0e05, 87
module --force purge ceey Ceey e
module load calcua/2024a atools/1.5.1 313, 1.0e05, 75

_ J
source <(aenv --data data.csv) input data in CSV format
./weather -t $temperature -p $pressure -v $volume

NG J

> Run weather for all data values

module load atools/1.5.1
sbatch --array $(arange --data data.csv) weather.slurm

» Round the table questions

o Which scenario applies most to your use case?

= will you be running large parallel jobs — make sure your jobs use all the resources
= or some medium-sized jobs

= or lots of small jobs — try bundling the jobs whenever possible
o how will you be organizing your jobs?

= will (most of) your jobs use a similar job script — try using variables and arguments
= will your jobs depend on each other
= or are they independent

> Run the appropriate scenarios from the previous chapters

UPERCOMPUTER
CENTRUM

VIaanderjen

HPC@UAntwerp mtroductlon

~

11 — Extra topics L)/

< o VLAAMS
UPERCOMPUTER | /nnovative Computin
CENTRUM | for A Smarter F/andeé;s vscentrum.be

Running an interactive job

» Example: interactive session to run a shared memory application

login $ srun -n 1 -c 16 --interactive --pty bash
rXcYYcnZ $ module --force purge

rXcYYcnZ $ ml calcua/2024a vsc-tutorial/202203-intel-2024a
rXxcYYcnZ $ omp_hello

» Example: starting an MPI program in an interactive session
login $ srun -n 64 -c 1 --interactive --pty bash
rXcYYcnZ $ module --force purge

rXcYYcnZ $ ml calcua/2024a vsc-tutorial/202203-intel-2024a
rXxcYYcnZ $ srun mpi_hello

Running an interactive job - XI1

> First make sure that your login session supports X11 programs
o log in to the cluster using ssh -X to forward X1 traffic
o or work from a terminal window in a VNC session

> Similar to non-X11 interactive jobs, but explicitly add the --x11 option before --pty bash

login $ srun -n 1 -c 64 --x11 --pty bash
rXcYYcnZ $ module --force purge

rXxcYYenZ $ ml calcua/2024a ..

rXcYYcnZ $ xclock

» Or immediately start X11 programs directly through srun

login $ srun -n 1 -c¢ 1 --x11 xclock

Using the visualisation node

» Use case: sometimes running GUI programs is necessary
o and some GUI programs need GPU-accelerated hardware

» Leibniz has one visualisation node: viz1.leibniz
o NVIDIA Quadro Pascal P5000 GPU
o has Xfce as desktop/window manager
o uses VirtualGL for graphics acceleration — e.g.: vglrun glxgears

» To access to remote desktop, you need to
o use a VNC client, such as TurboVNC or TigerVNC
o setup an SSH-tunnel (when accessing from outside Belgium)

& Remote visualisation @ UAntwerp

https://www.xfce.org/
https://virtualgl.org/
https://www.turbovnc.org/
https://tigervnc.org/
https://docs.vscentrum.be/antwerp/remote_visualization_uantwerp.html

Installing your own software

» Custom software should be installed in your own directory

> if the package is supported by EasyBuild
o modify an existing build script
o use our helper script to setup an EasyBuild environment

source init-easybuild-user.sh

» Otherwise: manually install the package
o find the building instructions for the package
o load a (sub)toolchain module and other modules that provide the libraries you need
o make sure to set the proper options for the architecture

> Alternative: use Apptainer containers instead

& EasyBuild documentation and tutorial

https://docs.easybuild.io/
https://tutorial.easybuild.io/

Installing your own packages

> Python (pip), R, Julia, ... packages
o load an appropriate Python, R, Julia, ... module
o point the install prefix to an appropriate directory

o note: when using pip, also change the location of the cache directory

» Conda environments are discouraged
o installations involve many small files
o typically, they do not use system and software stack libraries
o consume a lot of disk space and put stress on the filesystem
- alternative — wrap the Conda environment in a container

& Installing packages using pip
& R package management

https://docs.vscentrum.be/software/python_package_management.html
https://docs.vscentrum.be/software/r_package_management.html

Using containers — hpc-container-wrapper

> Solution: use hpc-container-wrapper — formerly known as Tykky
o tool to wrap your Python installation into a container, designed for use on HPC systems
o uses environment.yaml (Conda) or requirements. txt (pip) to build a container image
o provides wrapper scripts to transparently call executables within the container environment
= also provides wrap-container to generate wrapper scripts for an existing container

> Create the container with conda-containerize . | environment.yaml |~
$ module load hpc-container-wrapper ”2"‘9‘ ?5°“p4
) i . channels:
$ conda-containerize new --prefix - conda-forge
"$VSC_SCRATCH/bsoup" environment.yaml dependencies:
- beautifulsoup4
> Similar for pip-containerize -

Using containers — hpc-container-wrapper

> Use your containerized Python installation (e.g., from within a job)

$ export PATH="$VSC_SCRATCH/containers/bsoup/bin:$PATH”

$ which python
$VSC_DATA/containers/bsoup/bin/python

$ python -c "from bs4 import BeautifulSoup; soup = BeautifulSoup('<p>Hello

World</p>', 'html.parser'); print(soup.p.text)”

Hello World

> Still missing packages? — update the container

$ conda-containerize update --post-install
post.sh "$VSC_SCRATCH/containers/bsoup"

& Github repository or documentation

~

(post.sh)—=
pip install requests

conda install -c bioconda pyfaidx

https://github.com/CSCfi/hpc-container-wrapper
https://docs.csc.fi/computing/containers/tykky/

Using containers — apptainer

> Apptainer is available to build and run your container images

» Option: convert a (pre-build) Docker image to Apptainer

$ apptainer pull docker://hello-world:latest
$ apptainer run hello-world_latest.sif

> Alternative: build an image from scratch using build scripts
o called definition files
$ export APPTAINER_CACHEDIR=$VSC_SCRATCH/apptainer/cache
$ export APPTAINER_TMPDIR=$(mktemp -d -p /dev/shm)

$ apptainer build ubuntu_fpc.sif ubuntu_fpc.def
$ apptainer exec ubuntu_fpc.sif fpc -h

& Can | run containers on the HPC systems?
& Containers for HPC — VSC course, with GitHUb repository

{ubuntu_fpc.def)‘\

BootStrap: docker
From: ubuntu:oracular

%post
apt-get update
apt-get install -y fpc

_/

https://apptainer.org/
https://docs.vscentrum.be/software/singularity.html
https://www.vscentrum.be/events/containers-for-hpc-2
https://github.com/gjbex/Containers-for-HPC

VIaanderjen

HPC@UAntwerp mtroductlon

~

12 — Final notes LT/

< o VLAAMS
UPERCOMPUTER | /nnovative Computin
CENTRUM | for A Smarter F/andeé;s vscentrum.be

Some best practices

» Before starting to submit jobs, you should always check
o are there any errors in the script?
o are the required modules loaded?
o is the correct executable used?
o did you use the right process starter (srun)?
o does the job start in the right directory?

» Check your jobs at runtime
o login to a compute node and inspect your jobs
= |f you see that the CPU is idle most of the time that might be the problem
o check the job accounting information (e..g.. MinCPU and AvgCPU)
o alternatively: run an interactive job for the first run of a set of similar runs
o try to benchmark the software for (I/0) scaling issues when using MPI

warnings

» Avoid submitting many small jobs (in number of cores) by grouping them
o using a job array
o or using the atools or the Worker framework

» Runtime is limited by the maximum wall time of the queues
o for longer wall time, use checkpointing
o properly written applications have built-in checkpoint-and-restart options

» Requesting many processors could imply long waiting times

- what a cluster is not N

a computer that will automatically run the code of your
(PO application much faster or for much bigger problems

Some site policies

» Our policies on the cluster
o nodes are shared resources
o priority based scheduling
o fairshare mechanism
o Accounting @ CalcUA — using a project account is mandatory

> Implicit user agreement
o the cluster is valuable research equipment
o do not use it for other purposes than your research for the university
= no cryptocurrency mining or SETI@home and similar initiatives!
= not for private use
o you have to acknowledge the VSC in your publications

> Do not share your account nor your keys

https://www.uantwerpen.be/en/research-facilities/calcua/support/accounting/
https://docs.vscentrum.be/how_do_i_acknowledge_the_vsc_in_publications.html

Project accounts and credits

» At UAntwerp Tier-2, we introduction accounting
o using a project account is mandatory
o billing is done for both computing (jobs) and storage (files)

» On VSC Tier-1, you get compute time allocation
o number of core hours or GPU hours
o enforced through project credits
o requested through a project proposal
o free test ride “Starting Grant” - motivation required

» On KU Leuven Tier-2, you need compute credits
= bought directly via KU Leuven

User support

> Questions? — contact us via hpc@uantwerpen.be
o offices @ CMI — G.309-G.311

» mailing-list for announcements: calcua-announce@sympa.uantwerpen.be

» Some guidelines for help
o be as precise as possible — e.g.: give job id, submit dir, output files, ..
o help us help you - read (and understand) the relevant documentation

2 CalcUA website — VSC docs — Slurm docs

mailto:hpc@uantwerpen.be
mailto:calcua-announce@sympa.uantwerpen.be
https://calcua.uantwerpen.be/
https://docs.vscentrum.be/
https://slurm.schedmd.com/documentation.html

Evaluation

» Please fill in our short guestionnaire before 13 Mar

> Let us know what you liked and how we can improve our courses

» Thank you for your participation!

https://forms.office.com/e/scrUZkC0BW

More training

> HPC core facility CalcUA

o HPC@UANtwerp introduction
o More Linux commands

> VSC Trainings

o trainings organized by other VSC
sites and abroad (including LUMI,
PRACE, EUROCC)

i |
VLAAMS =
SUPERCOMPUTER /(Vlaanderen
CENTRUM (s supercomputing

Home About VSC Systems & Services Showcase News & Events VSC Training User Portal Access

The VSC spends the necessary time supporting and training researchers who make use of the infrastructure. It is important that
calculations can be executed efficiently because this increases the scientific competitive position of the universities in the international
research landscape. The VSC also organizes events to give its users the opportunity to get in touch with one another to foster new
collaborations. The annual User Day is a prime example of such an event that also gives the users the occasion to discuss and exchange
ideas with the VSC staff.

Training organized by the VSC is intended not only for researchers attached to Flemish universities and the respective associates but
also for the researchers who work in the Strategic Research Centers, the Flemish scientific research institutes, and the industry.

The training can be placed into four categories that indicate either the required background knowledge or the domain-specific subject
involved:

¢ Introductory: general usage, no coding skills required
¢ Intermediate

* Advanced

¢ Specialist courses & workshops

el =l

https://hpc.uantwerpen.be/
https://www.vscentrum.be/vsctraining

