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• A practical approach 
• To build efficient applications
• To understand performance issues

• To maximize code flexibility
• To minimize coding efforts

Goal
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• Some computer architecture concepts related to performance and 
machine limits
• Levels of parallelism → peak performance
• Memory on modern CPUs → bandwidth, latency

• Example1 [toy problem]
• Atomic system interacting through a Lennard-Jones potential
• Monte Carlo setting

• Example 2 
• Atomic system interacting through Lennard-Jones potential
• Molecular dynamics setting

• Optimizing code ⇔ optimizing data access
• Spatial sorting using space filling curve

• Choosing a programming language

Overview 
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A little terminology
• A (compute) node in a cluster is basically a PC without all 

the peripheral devices
• Nodes are connected through a fast network: 

interconnect
• Every node has several sockets, each of which contains a 

processor
• Every processor contains many cores
• Each core can simultaneously execute one task: thread
• Simultaneous multi-threading : more than one thread per core
• Usually switched off on clusters

• Thread executes a sequential stream of instructions

Levels of parallelism
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Hopper
• 168	nodes
• 2	sockets	x	E5-2680	v2
• 10	cores	per	CPU
• 20	cores	per	node
• 1	thread	per	core
• 3360	cores
• 3360	threadsInterconnect

(Infiniband)



1. Several nodes can cooperate on a task
• Distributed memory parallellization
• Nodes communicate information via interconnect
• Typically using MPI: Message Passing Interface

2. Several cores can cooperate on a task
• Shared memory parallellization
• Cores communicate information via memory
• Often using OpenMP, but also MPI, … 

Levels of parallelism
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3. A single core may exploit pipelining and 
vectorisation to execute instructions in parallel

Levels of parallellism
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• Instructions break down in micro-instructions
• Each micro-instruction uses a distinct part of the 

hardware
1. Instruction fetch (IF)
2. Instruction Decode (ID)
3. Execution (EX)
4. Memory Read/Write (MEM)
5. Result Writeback (WB)

Pipelining 
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Pipelining 
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Pipelining 
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• Fused instructions: Fused Multiply-Add executes 
y = a*x+b (in vector mode

in one cycle

• Vector register width on Hopper is 256 bits
• 8 single precision numbers
• 4 double precision numbers

Vectorization
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• 3 levels of parallellism:
• Intra-core: pipelining and SIMD

• Multi-core: shared memory

• Multi-node: distributed memory

Levels of parallellism
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• 3 levels of parallellism:
• Intra-core: pipelining and SIMD

• Multi-core: shared memory

• Multi-node: distributed memory

Levels of parallellism
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• Who does the work?
• Compiler 
• but it appreciates/needs 

your help
• You and the compiler
• OpenMP = directives
• Relatively simple

• You only
• MPI
• Harder



1. Monte Carlo setting:
• compute the energy of configurations
• ensemble averages
• no (individual) forces, accelerations or velocities
• no time integration

2. Molecular Dynamics setting:
• compute the time evolution of a collection of atoms
• Individual forces, accelerations, velocities
• [time integration]

Case study – Lennard-Jones system
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• Compute the potential energy of a system of 𝑁
atoms: ∑ 𝑉$% 𝑟'(�

'*(
• Doing this for all atoms is a 𝑂 𝑁, approach 
• we do it only for a single atom just for the purpose of 

illustrating the behavior of the hardware (toy problem)
• ∑ 𝑉$% 𝑟'(�

(

• Techniques to reduce to 𝑂 𝑁 will be discussed in 
MD setting

• We will only consider single core performance
• That is the first thing to optimize anyway 
• Already complex enough for a single lecture
• SIMD and pipelining are the only level of parallelism

MC experiment 
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Lennard-Jones interactions

• Lennard-Jones potential (neglecting constants)



Lennard-Jones potential 
(sequential code)

double VLJ0( double r ) {

return 1./pow(r,12) - 1./pow(r,6); 

} // 18.0 x slower
double VLJ1( double r ) {

return std::pow(r,-12) - std::pow(r,-6);

} // 14.9 x slower

double VLJ2( double r ) {

double tmp = std::pow(r,-6);
return tmp*(tmp-1.0);

} // 7.8 x slower

double VLJ3( double r ) {

double tmp = 1.0/(r*r*r*r*r*r);

return tmp*(tmp-1.0);
} // 1.01 x slower

double VLJ( Real_t r ) {

double rr = 1./r;

rr *= rr;

double rr6 = rr*rr*rr;
return rr6*(rr6-1);

} // 1 x slower



Lennard-Jones potential

double VLJ( Real_t r ) {

double rr = 1./r;

rr *= rr;
double rr6 = rr*rr*rr;

return rr6*(rr6-1);

} // 1 x slower

double VLJ( Real_t r2 ) {

double rr = 1./r2;
// rr *= rr;

double rr6 = rr*rr*rr;

return rr6*(rr6-1);

} // avoid one sqrt per function call (to compute the distance r)



Cost of instructions

• cheap instructions +,-,* ~1 cycle
• Rather expensive / ~10-20 cycles
• Expensive sqrt ~35 cycles
• Very expensive trigonometric/

logarithmic/
exponential functions ~100-200 cycles

• Things get better if pipelining can be exploited
• Relative cost remains



• x0, y0, z0 : coordinates of our central atom
• x1[1:m], y1[1:m], z1[1:m] : coordinates of m 

neighbouring atoms
• Let m=512, 1012, …, 229~0.5*109

• surround by outer loop iterating 229/m times
• every m-case executes 229 evaluations of VLJ(r2)
• Variations 
• Loop over all m neighbouring atoms contiguously
• Structure of arrays (SoA) : x x x ... y y y ... z z z ...
• Array of structures (AoS) : x y z ... x y z ... x y z ...

• Pick atoms in the arrays x1, y1, z1 with a random 
permutation

MC experiment 
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integer :: m ! # of neighbour atoms
integer :: k ! # of iterations, m*k=cst, same amount of work per iteration
real(wp) :: x0,y0,z0, p(3*m)
! Contiguous access, SoA: p=[xxx…yyy…zzz…]
do ik=1,k

do im=1,m
r2 = (p(im)-x0)**2 +(p(m+im)-y0)**2 +(p(2*m+im)-z0)**2
v = v + lj_pot2(r2)

enddo
enddo

MC - Contiguous - SoA
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integer :: m ! Number of neighbour atoms
real(wp) :: x0,y0,z0, p(3*m)
! ordered access, AoS: p=[xyzxyzxyz…]
do ik=1,k

do im=1,m
r2 = (p(im)-x0)**2 +(p(1+im)-y0)**2 +(p(2+im)-z0)**2
v = v + lj_pot2(r2)

enddo
enddo

MC - Contiguous - AoS
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integer :: m ! Number of neighbour atoms
real(wp) :: x0,y0,z0, p(3*m)

integer :: j(m) ! random permutation of [1:m]

! random access
do ik=1,k

do im=1,m
r2 = (p(j(im))-x0)**2 +(p(j(im)+m)-y0)**2 +(p(j(im)+2*m)-z0)**2
v = v + lj_pot2(r2)

enddo
enddo

MC - Random access
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Results 
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Results 
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Q1: What is 
going on?



Results 
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Q2: is this the 
best we can get?



• Which factors influence performance of a code?
• Machine limits

Performance 
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• ≝ Maximum # floating point operations per second

• For a single core the peak performance =
• 2*8 instructions per cycle in SP 
• 2*4 instructions per cycle in DP
• The 2 comes from the fused multiply and add
• The 8, resp. 4 come from the vector register width

• Peak performance per node 
• (1 cycle = 1/clock_frequency)
• Assuming 1 hardware thread per core: 
• (#cores=20) * 2*8(SP) * (f=2.8Ghz) = 896 Gflop/s
• (#cores=20) * 2*4(DP) * (f=2.8Ghz) = 448 Gflop/s

Peak performance
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• Peak performance is not the only limiting factor…
• It is not the most common limiting factor
• Instructions operate on data, ...
• Data resides in memory
• Accessing data takes time (and energy)
• Data has to be moved from memory to cpu register before it 

can be processed
• Peak performance has increased much faster than 

the speed at which data can be moved between 
memory and cpu

Performance
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• Memory bandwidth
• The maximum number of bytes that can be moved per 

second between main memory and the cores
• Hopper 
• 92-110 GB/s (varies depending on read:write ratio)

• Memory latency
• The number of cycles (or the time) needed to fetch a single 

item from main memory
• Hopper
• ~180 cycles (within socket)
• ~350 cycles (across sockets)

Speed of moving data
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• Code is compute bound if 
• The cpu can execute its compute instructions without having 

to wait for data
• The limit is the theoretical peak performance
• [Used to be the common case – not any more]

• Code is memory bound if
• A considerable amount of cycles is spent waiting for data
• Too much data requested:  
• Bandwidth saturation = machine limit

• Too distant data requested:
• If data is not in the cache: latency penalty
• Latency problem = machine limit 

• [most common situation]

Performance
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Roofline model
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• Optimizing code was about organizing compute 
instructions 
• Pretty straightforward: less compute cycles is less cputime
• Algorithmic complexity was important guideline
• Optimizing code is optimizing data access
• To keep the processor busy doing useful stuff
• Algorithmic complexity is no longer a guarantee for 

optimal performance
• E.g. linear search (as in a map) often faster than binary or other 

search algorithms, also sorting
• For large N low order complexity wins, but hardware caching 

takes an early lead

• Understanding how memory works is necessary
• Experimenting and measuring is necessary 

Memory bound - consequences
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Hierarchical memory organisation

57

Registers: ~1kB per core 0 cycles

L1 Cache: 32 kB per core ~1 cycles

L2 Cache: 256 kB per core ~10 cycles

L3 Cache: 25 MB per socket ~50 cycles

DRAM: 64-256 GB per node ~200 cycles
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• Memory is not fetched on a per item basis
• But in chunks called cache lines
• typically 64 Bytes long
• 16 single precision items
• 8 double precision items

Memory organization
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• Linear search of array A[i], i=1..n
• A[1] is not in cache, wait time before cache line is loaded, 

dram latency (~200 cycles) and before item A[1] can be 
examined
• Once the cache line is loaded, A[2..16] are also in L1 cache 

and are ready to be examined without delay
• Hardware recognizes your loop over the array and keeps 

loading next (or previous) cache lines into the L1 cache, so 
that the delay is vanishing
• Depending on how much work it takes to examine each 

item, as soon as item A[16], the next cache line A[17:32] 
may have been loaded already or not
• In any case, the wait time is now less than the dram latency 

(~200 cycles)
• The limitation becomes memory bandwidth of the machine

Memory organisation
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• Binary search of array A[i], i=1..n
• A[n/2] is not in cache, wait time before cache line is loaded, 

dram latency 
• Next item needed is A[n/4] or A[3n/4], which is not in the 

cache, dram latency hits you again 
• In fact, the dram latency keeps on hitting you until the 

search range is reduced to one or two cache lines, 
• You do only one examination/dram latency, as opposed to 

16/dram latency in linear search.

Memory organisation
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• Instructions are also data stored in memory
• Branching instructions can cause cache misses too!
• Instruction cache misses
• Avoid unpredictable branches in loops

Memory organization
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• code::dive conference 2014 - Scott Meyers: Cpu
Caches and Why You Care
• https://www.youtube.com/watch?v=WDIkqP4JbkE

Need more insight?
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Experiment 
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Mem used = 3*m*8 Bytes

Q1: What is 
going on?
15x slower

Cache boundaries



Experiment 
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Q2: is this the 
best we can get?



• 14 flops * 229 iterations in 1.2 s = 6.26 109 flops/s
• peak performance:

1*1*4*2.8 GHz = 11.2 Gcycles/s = 11.2 Gflops/s
• We are running at 55.9 % of peak performance

Flops per second
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• ! Contiguous access, SoA: p=[xxx…yyy…zzz…]
• do ik=1,k
• do im=1,m
• r2 = (p(im)-x0)**2 
• +(p(m+im)-y0)**2 
• +(p(2*m+im)-z0)**2
• !           r = lj_pot2(r)
• r2i = 1.0d0/r2
• rr6i = r2i*r2i*r2i;
• lj_pot2 = 4.0d0*rr6*(rr6-1.0d0);
• enddo
• enddo

• 3-, 2+, 3* 

• 1/
• 2*
• 2*, 1-
• --------------
• 14 flops



Experiment 
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Q2: is this the 
best we can get?

Not really, there 
is 44% room for 

improvement



Experiment 
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Q3: why aren’t we 
running faster



• 24 B *229 iterations in 1.2 s = 10.7 GB/s
• Bandwidth measured by Intel mlc:
• 109 GB/s for 10 threads (all reads)
• 10.9 GB/s for 1 thread
• We are running at maximal bandwidth 
• Bandwidth saturation

Bytes per second
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• ! Contiguous access, SoA: p=[xxx…yyy…zzz…]
• do ik=1,k
• do im=1,m
• r2 = (p(im)-x0)**2 
• +(p(m+im)-y0)**2 
• +(p(2*m+im)-z0)**2
• !           r = lj_pot2(r)
• r2i = 1.0d0/r2
• rr6i = r2i*r2i*r2i;
• lj_pot2 = 4.0d0*rr6*(rr6-1.0d0);
• enddo
• enddo

• 3-, 2+, 3* 

• 1/
• 2*
• 2*, 1-
• ------------
• 14 flops

• 3 DP

• ----------
• 24 B



Experiment 
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Q2: is this the best 
we can get?
Yes and No

No: We are 
processing the 
maximum amount of 
data in the give time 
(but the processor is 
idle for 44% of the 
time). 

Yes: We can improve 
if we can do more 
useful work on the 
data while they are 
in cache.



Roofline model
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Roofline model
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increase the computational intensity
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Roofline model
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• For simple cases 
• a back of the envelope calculation like this 
• and an understanding of how memory works 
can guide you to more efficient code

• For real cases we need something more 
sophisticated
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• Intel Advisor xe
• Vectorization and threading
• Intel VTune Analyzer xe
• Data access and cpu utilization
• Intel Inspector
• Thread performance analysis (OpenMP, Intel TBB)
• Intel Cluster Inspector
• MPI process performance analysis

Intel Parallel Cluster xe

83



• Intel Advisor xe
• Vectorization and threading
• Intel VTune Analyzer xe
• Data access and cpu utilization
• Intel Inspector
• Thread performance analysis (OpenMP, Intel TBB)
• Intel Cluster Inspector
• MPI process performance analysis

Intel Parallel Cluster xe
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For a later session



• https://software.intel.com/en-us/get-started-with-advisor
• https://software.intel.com/en-us/get-started-with-vtune

Intel advisor 
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$ssh –X vsc20170@login.hpc.uantwerpen.be
Last login: Thu Sep  8 16:38:25 2016 from 143.169.185.55
-----------------------------------------------------------
Welcome to Hopper!
...
vsc20170@ln02 ~$

vsc20170@ln02 ~$ qsub –I –X
vsc20170@r5c6cn05 ~$
vsc20170@r5c6cn05 ~$ module load Advisor
vsc20170@r5c6cn05 ~$ module list
Currently Loaded Modulefiles:

1) Advisor/2016_update4
vsc20170@r5c6cn05 ~$
vsc20170@r5c6cn05 ~$ advixe-gui &

Intel Advisor

86

Allow X11 forwarding. On macOS install 
XQuartz, On Windows install Xming

& = Run in background, so the
terminal remains functional

Start interactive job with X11 forwarding. 

The compute node we are running on



Intel Advisor

87



Intel Advisor
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Intel Advisor
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Intel Advisor
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Intel Advisor
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Intel Advisor
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• Add compiler option –xHost

Intel Advisor
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Intel Advisor
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Slight improvement



Intel Advisor
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Slight improvement
But not what we hoped for



Intel Advisor
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• Run Intel Advisor again

• List of hot spots

Intel Advisor
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Intel Advisor
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• Run Intel Advisor again

• List of hot spots

Intel Advisor
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Intel Advisor
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Random access



• Run Intel Advisor again

• List of hot spots

Intel Advisor
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Contiguous-AoSRandom access Contiguous-SoA
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Contiguous-AoSRandom access Contiguous-SoA
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Intel Advisor

113



Intel Advisor
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• Advisor tells us
• Vectorization is ok
• Strided memory access in the random access loop is a 

problem
• Let’s run a memory access analysis in VTune
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$ssh –X vsc20170@login.hpc.uantwerpen.be
Last login: Thu Sep  8 16:38:25 2016 from 143.169.185.55
-----------------------------------------------------------
Welcome to Hopper!
...
vsc20170@ln02 ~$ module load VTune
vsc20170@ln02 ~$ module list
Currently Loaded Modulefiles:
1) GCCcore/5.4.0                        4) ifort/2016.3.210-GCC-5.4.0-2.26      7) VTune/2016_update3
2) binutils/2.26-GCCcore-5.4.0          5) iccifort/2016.3.210-GCC-5.4.0-2.26
3) icc/2016.3.210-GCC-5.4.0-2.26        6) Advisor/2016_update4

vsc20170@ln02 ~$
vsc20170@ln02 ~$ amplxe-gui &

Intel Vtune Amplifier
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Intel Vtune Amplifier
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Intel Vtune Amplifier
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Some Advanced Hot spot analysesSome Advanced Hot spot analyses



Intel Vtune Amplifier
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Some Memory ACCess analysesSome Memory ACCess analyses
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Intel Vtune Amplifier
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New analysis



Intel Vtune Amplifier
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Analyze memory access



Intel Vtune Amplifier
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Hit start
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Intel Vtune Amplifier
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Intel Vtune Amplifier

127

Our program is memory bound



Intel Vtune Amplifier
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Due to complete cache misses



Intel Vtune Amplifier
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Bandwidth saturates fast because we move an 
entire cache line for almost every data item 



Intel Vtune Amplifier
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# complete cache misses



Intel Vtune Amplifier
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Average # of cycles we have to wait for 
a data item (should be ~1!)



Intel Vtune Amplifier
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Intel Vtune Amplifier
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Intel Vtune Amplifier
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Intel Vtune Amplifier
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Intel Vtune Amplifier
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CPI = cycles per instruction
Peak performance corresponds to 4 instructions per 
cycle in DP vectorized code. Hence CPI should be 

between 0.25 and 0.5.



Intel Vtune Amplifier
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Pipeline stalls (because the data is not arriving in time)



Intel Vtune Amplifier
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Our program is memory bound
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Intel Vtune Amplifier
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Bandwidth saturates fast because we move an entire 
cache line for almost every data item 



Intel Vtune Amplifier
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Intel Vtune Amplifier

142

Only one of 20 cores were use (no OpenMP paralellization)



Intel Vtune Amplifier
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• Advisor is profiler
• Analyzes your code on a per statement basis
• Looks at the assembly code to analyze vectorization
• Hints to the location of the problem
• Vtune Amplifier accumulates statistics on hardware 

events such as expensive instructions, vector 
instructions, cache misses, …
• Statistics accumulated on a per subprogram (function, 

subroutine) basis, not per statement
• Hints to the nature of the problem
• Both are complementary

Advisor vs Vtune amplifier

144



• Compiler does good job at producing vectorized
code
• Advisor will tell you if and why the compiler is 

sometimes not able to produce vectorized code, 
and will suggest solutions
• Advisor tells you which parts of your code consume 

the most cputime and are candidates for 
optimization

What have we learned so far
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• Most often performance problems on modern cpus
are due to memory access problems (DRAM latency 
hits you)
• VTune amplifier gives you clues on how and where 

to fixes the issues
• CPI and Cache Misses
• Optimize

1.If there are cache misses, try to reduce them
• Easier said than done (we’ll come to that in the next section)

2.If you are memory bound and CPI is high, 
1. Verify vectorization
2. Increase the computational complexity (do more useful work on 

the data while it is in cache)

What have we learned so far
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• Suppose we have 109 atoms
• Computing all interactions in single precision
• 109(109-1)/2 ~ 0.5 1018

• complexity 𝑂(𝑁,)– not a good idea
• Adding 1 atom increases the work by a factor 𝑁 = 104

• Adding 2 atoms increases the work by a factor 𝑁 5 𝑁 = 1067

• …

• Lennard-Jones is short range
• lim

;→=
4𝜋𝑟,	𝑉$% 𝑟 → 0

• In practice cut-off 𝑟. ≅ 2.5

Molecular dynamics settings
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forces = 0
do i=1,N

do j=1,N-1
r2 = squared_distance(i,j)
if r2<rcutoff2

force_ij = ljforce(r2)
force(i) = force(i) + force_ij
force(j) = force(j) - force_ij

endif
enddo

enddo
integrate forces to update atom positions

Implementing cut-off
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• Still 𝑂(𝑁,) L
• Might be ok for small N



• Verlet lists
• Verlet list of atom i is list of all atoms

j for which 𝑗 < 𝑖 and 𝑟'( < 𝑟.
• Increase cutoff slightly so that we do 

not have to update the Verlet lists at 
every timestep (depending on how 
vigorously the atoms move)
• Verlet list construction is amortized

• Construction of Verlet lists is still 𝑂(𝑁,)L
• Is dominant data structure: typically between 50 

and 100 neighbour atoms/atom

Implementing cut-off
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• Put atoms in cells of width 𝑟. : 𝑂 𝑁 J
• Only atoms in neigbouring cells can satisfy 𝑟'( < 𝑟.
• Because of symmetry only half

of the neighbouring cells must
be examined
• Construct Verlet lists as follows
• Loop over all cells [𝑂 𝑁 ]
• Loop over all neighbours of the 

current cell using the neighbour
stencil [𝑂 1 ]
• Construct the Verlet list of all

atoms in the current cell [𝑂 1 ]

• Now our MD algorithm is 𝑂 𝑁 J

Implementing cut-off
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• Atoms move!
• Iterating over the Verlet lists to compute the 

interactions will soon jump randomly through 
memory
• Performance evolves naturally to the random 

access case

• Fix data access pattern using spatial sorting
• Spatial sort = ensure that atoms which are close in 

space are also close in memory
• This reduces cache misses

Implementing cut-off
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• Space filling curve
• Linearize a space of 

dimension >1
• Hilbert curve
• Hilbert index: 

coordinate of a cell 
along the Hilbert curve
• Locality guarantee: 

points close in space 
are also close along 
the space filling curve 
(on average)

Fixing the data access pattern
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1. Sort atom property arrays (rx,ry,rz,vx,vy,vz,…) based on 
the Hilbert index h of the cell of the atoms (spatial sort).
Atoms which are close in space (and hence will interact) will be close in memory 
(and hence will be in the cache with high probability)

2. Build a table containing the index of the first atom in each 
cell, and the number of atoms in the cell (Hilbert list)

3. Build Verlet list from the Hilbert list (discard the latter)
4. Compute the interactions by looping over the Verlet list
5. Integrate forces, updating velocities and positions and time
6. If need_to_rebuild_verlet_list is true

jump back to step 1.
else

continue at step 4. 

Fixing the data access pattern
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• We need to 
• Compute Hilbert indices
• Sort atom property arrays
• Build Hilbert list and Verlet list

• Fixing data access patterns can be a lot of work

Fixing the data access pattern



• Implementation in Fortran? C? C++?
• Arguments
• C++ is inefficient
• Modern compilers good enough to generate efficient code 
• After all your are using the same hardware

Intermezzo
Choosing a programming language
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Lie #2

Lie #1

• Implementation in Fortran? C? C++?
• Arguments
• C++ is inefficient
• Modern compilers good enough to generate efficient code 
• After all your are using the same hardware

• Fortran is efficient
• Also fortran has constructs that sometimes come in handy, but can kill 

performance
• But C++ has quite a bit more features which can kill performance 

than Fortran
• Because C++ is a general purpose language and Fortran is meant for 

scientific computing
• Yet these features can be extremely useful if you use them wisely
• For computational kernels where performance is an issue you generally 

need to stay close to the C subset and far away from the C++ features 
such as classes, inheritance, virtual functions, etc. (templates are an 
exception) 

Intermezzo
Choosing a programming language

160



Lie #2

Lie #1

• Implementation in Fortran? C? C++?
• Arguments
• C++ is inefficient
• Modern compilers good enough to generate efficient code 
• After all your are using the same hardware

• Fortran is efficient
• Also fortran has constructs that sometimes come in handy, but can kill 

performance
• But C++ has quite a bit more features which can kill performance 

than Fortran
• Because C++ is a general purpose language and Fortran is meant for 

scientific computing
• Yet these features can be extremely useful if you use them wisely
• For computational kernels where performance is an issue you generally 

need to stay close to the C subset and far away from the C++ features 
such as classes, inheritance, virtual functions, etc. (templates are an 
exception) 

Intermezzo
Choosing a programming language

161



Intermezzo
Choosing a programming language
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• I’ll use C++ because I know it better



Most often a lie too!

Intermezzo
Choosing a programming language
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• I’ll use C++ because I know it better



Most often a lie too!• I’ll use C++ because I know it better
• Unless you have read and understood all the C++ books by Scott 

Meyers, Herb Sutter, Andrei Alexandrescu, Nicolai Josuttis
• In which case you probably also understand which C++ features 

can kill performance and when they should be used to your 
advantage
• For number-crunching I find myself advancing faster using Fortran 

than using C++ (which I do know better!)

Intermezzo
Choosing a programming language
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• I’ll use C++ because it is better documented 
• There aren’t too many books on Fortran like the above ones on 

C++ 
• There is no website of the same quality as cplusplus.com or 

cppreference.com for Fortran (imho)
• But still it is much harder to learn and to learn to use efficiently
• Not a valid argument

Intermezzo
Choosing a programming language
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Not a lie



• I’ll use C because that is the language in 
which Python was written and I want too 
integrate my code with Python 
• Python integration leverages your code with 
• A high level programming interface: 
• Providing initial data for your simulation is much easier and flexible 

through a Python script than having to parse input files…
• Compose and customize high level solution schemes with ease (e.g. 

choosing another solver for a subproblem)
• Hundreds of very useful open source Python libraries: Numpy, 

Scipy, Pandas, matplotlib, …
• But …

Intermezzo
Choosing a programming language
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Good point!



• I’ll use C because that is the language in which 
Python was written and I want too integrate my 
code with Python [continued]
• …
• But the easiest way to create your own module that can be 

imported in Python is through f2py
• Automatically turns your Fortran code into a Python module
• As simple as
• F2py –c mysource.f90 –m myPythonModule

• Automatically integrates with Numpy! Pass Numpy arrays to 
your own Fortran library with no effort and no copying of data!
• Much harder in C
• Also feasible in C++ with the help of boost.python and 

boost.multi_array, easier than C but not as easy as f2py
∴ stick to Fortran

Intermezzo
Choosing a programming language

167



• I’ll use C/C++ because I don’t want 
to mess with storage orders
• Fortran uses row-major ordering indices start at 1 
• C/C++ use column-major ordering indices start at 0
• Plenty of ways to mess up!
• Inadvertent copying of the array when passing to fortran!
• Trivial for 1D arrays (but mind the indexing)
• Numpy arrays by default use the C convention, but arrays can be 

easily made to follow the Fortran convention:
• A=numpy.empty( (2,2), dtype=np.float32, order=‘F’)

• A little bit of experimentation will take away the confusion
• Simplest way to avoid problems:
• If you use fortran modules adhere to fortran convention in numpy arrays
• If you use C/C++ modules adhere to C/C++ convention in numpy arrays
• If you use both pay attention..

Intermezzo
Choosing a programming language
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• I’ll use X because I need to use some library Y that 
is written in X
• Point taken, often the easiest way
• Valid argument for libraries that deal with parallelization 

issues:
• TBB, for shared memory parallelization (C++) 
• Libraries abstracting vector instructions Vc, boost.simd (C++)

• However, there is a lot of support for mixed language 
programming
• If you do not master X you might end up writing inefficient 

code and loosing the advantage of using Y
• it may be worthwhile to find out how to tackle the mixed 

language challenge
• Once done, you will proceed faster and write efficient code

Intermezzo
Choosing a programming language
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• Stick to Fortran (unless you are a seasoned C++ 
programmer)

• Using Python and Numpy for high level 
programming and Fortran (C++) for your own 
number-crunching routines is a very practical 
approach 
• Use f2py to turn your fortran routines into a Python module 

that is compatible with Numpy

To conclude
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• Details of Python+Numpy+Fortran/C++ is topic of 
another talk
• Including shared memory parallelism (multi-

threading) and distributed memory parallelism 
(multi-node)

Intermezzo
Choosing a programming language
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Back to Lennard-Jones MD

172

Computational kernel
Fortran
MD stuff

LJ potential, force, 
loop over verlet list

Organizing the computations
Python

Initialization, construct Verlet lists, control experiment, testing, …
Store atom data in Numpy arrays

Hilbert curve
C++

[i,j,k] <-> h

Python module
“import pyHilbertCpp”

Python module
“import pyMDFortran”

f2py (Numpy) C++,
boost.python, 

boost.multi_array



• Take derivative of (Lennard-Jones) potential with 
respect to interatomic distance vector = force 
exerted on the atoms

• HI ;
H;⃗ = HIK ;K

H;K
H;K

H;⃗ =
HIK ;K

H;K 	2		𝑟 = 𝑓 𝑟, 	𝑟
• Loop	over	𝑖
• Loop	over	𝑗 ∈ 𝑉𝐿'
• �⃗�' += 𝑓 𝑟'(, 𝑟'(
• �⃗�( −= 𝑓 𝑟'(, 𝑟'(

• 3 x load (𝑟()
• 3 x load (�⃗�()
• 3 x store (�⃗�()

MD interaction forces
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• Baseline case:
• N atoms 
• Compute interaction forces of atom 0 with all other atoms
• Contiguous memory access
• Bandwidth saturated

Results
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Baseline
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Baseline
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Baseline



Results 
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MC MD



Results 
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MC: 450 106 interactions/s

MC MD



Results 
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MC: 450 106 interactions/s MD: 90 106 interactions/s

MC MD



Results 
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MC: 450 106 interactions/s MD: 90 106 interactions/s

MC MD

In terms of interactions/s MD is about 5 times slower than MC
• A bit more instructions per interaction, but MC is memory bound, that 

should not matter
• 3 times more memory access
• With a read:write ratio of 2:1 the bandwidth drops from 11 GB/s to 9.5 GB/s
• 3x11/9.5 = 3.47
• Still factor 1.44 slower than expected



• Three cases:
1. Atoms on FCC lattice 
2. Permute the atoms (=random memory access)
3. Spatial sort by hilbert index

• Every experiment build the Verlet list and 
computes the interactions
• CPUtime is measured only for computing the 

interactions
• Plot result relative to baseline 
• 90 106 interactions/s

Experiments 
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• Put atoms on FCC lattice
• 4 atoms per unit cell
• Closest neighbor 

distance = LJ 𝑟R'S
• 𝑟.TUVWW = 3𝑟R'S

Case 1
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Case 1
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Close to baseline



Case 2
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Case 2

192

Due to diffusion this 
becomes the real 
case pretty soon!



Case 3
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Case 3
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We are back on 
the baseline!
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We are back on 
the baseline!

Improved
performance 

at large N



Case 3
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We are back on 
the baseline!

Improved
performance 

at large N

Spatial sort is relatively expensive
but the timestep and displacements are small
Cost can be amortized over many timesteps



1. Sort atom property arrays (rx,ry,rz,vx,vy,vz,…) based on 
the Hilbert index h of the cell of the atoms (spatial sort).
Atoms which are close in space (and hence will interact) will be close in memory 
(and hence will be in the cache with high probability)

2. Build a table containing the index of the first atom in each 
cell, and the number of atoms in the cell (Hilbert list)

3. Build Verlet list from the Hilbert list (discard the latter)
4. Compute the interactions by looping over the Verlet list and 

measure the performance (e.g. interactions/s)
5. Integrate forces, updating velocities and positions and time
6. If performance degrades

jump back to step 1.
else

continue at step 4. 

Fixing the data access pattern



1. Sort atom property arrays (rx,ry,rz,vx,vy,vz,…) based on 
the Hilbert index h of the cell of the atoms (spatial sort).
Atoms which are close in space (and hence will interact) will be close in memory 
(and hence will be in the cache with high probability)

2. Build a table containing the index of the first atom in each 
cell, and the number of atoms in the cell (Hilbert list)

3. Build Verlet list from the Hilbert list (discard the latter)
4. Compute the interactions by looping over the Verlet list and 

measure the performance (e.g. interactions/s)
5. Integrate forces, updating velocities and positions and time
6. If performance degrades

jump back to step 1.
else

continue at step 4. 

Fixing the data access pattern



• atoms : 2,13 106

• pairs : 162 106

• Ratio   : 76
• Pairs computed per second : 88.6 106

• B/atom: 376,5 (320B is in the verlet list)
• Bandwidth = 9,5 GB/s (measured by mlc 2 reads : 1 write)
• maximum atoms per second: 27.000.000
• actual atoms per second: 1.160.000
• ratio: 0,04

• flops_per_pair : 27
• flops_per_atom : 2055,5
• gflops_per_second: 2,39
• peak performance : 11,2
• ratio : 0,21

Performance analysis
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Not memory bound

Not compute bound either!

Lot of flops per atom!



Roofline MD setting
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MD



Roofline MD setting
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MD

MC



What do the intel tools tell?
Advisor
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j=1
do ia=1,n_atoms

ia_pairs = verlet_linear(j) ! Size of the Verlet list of atom ia
    !DIR$ SIMD
    do k = j+1,j+ia_pairs

ja = verlet_linear(k)+1 ! +1 since Fortran starts counting from 1 !
        dx = rx(ja)-rx(ia)
        dy = ry(ja)-ry(ia)
        dz = rz(ja)-rz(ia)
        aij = lj_force_factor2( dx**2 + dy**2 + dz**2 )

! update particle ia acceleration
        ax(ia) = ax(ia) + aij*dx
        ay(ia) = ay(ia) + aij*dy
        az(ia) = az(ia) + aij*dz

! update particle ja acceleration
        ax(ja) = ax(ja) - aij*dx
        ay(ja) = ay(ja) - aij*dy
        az(ja) = az(ja) - aij*dz

enddo
    j = j + 1 + ia_pairs
enddo

What do the intel tools tell?
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What do the intel tools tell?
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• SIMD vectorization means that you 
update ax(aj) for 4 successive ja
values (also ay(aj) and az(ja))

• The compiler cannot know that the ja
are different

• Assumed dependency
• We know that the ja are different by 

construction of the Verlet list
• We must tell the compiler to ignore 

assumed dependencies



j=1
do ia=1,n_atoms

ia_pairs = verlet_linear(j) ! Size of the Verlet list of atom ia
    !DIR$ SIMD
    do k = j+1,j+ia_pairs
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        dx = rx(ja)-rx(ia)
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enddo

What do the intel tools tell?
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Ignore assumed dependencies and vectorize the loop



• “inserts present” = hint for gather/scatter

• Filling a vector register element per element 
(in the case of non-contiguous elements)

• AVX (highest SIMD extension available on Hopper) 
has no built-in support for gather/scatter

• AVX2 has special instructions for gather/scatter
• Available on BrENIAC
• Available on successor of Turing

What do the intel tools tell?
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j=1
do ia=1,n_atoms

ia_pairs = verlet_linear(j) ! Size of the Verlet list of atom ia
!DIR$ SIMD

    do k = j+1,j+ia_pairs
ja = verlet_linear(k)+1 ! +1 since Fortran starts counting from 1 !

        dx = rx(ja) - rx(ia)
        dy = ry(ja) - ry(ia)
        dz = rz(ja) - rz(ia)
        aij = lj_force_factor2( dx**2 + dy**2 + dz**2 )

! update particle ia acceleration
        ax(ia) = ax(ia) + aij*dx
        ay(ia) = ay(ia) + aij*dy
        az(ia) = az(ia) + aij*dz

! update particle ja acceleration
        ax(ja) = ax(ja) - aij*dx
        ay(ja) = ay(ja) - aij*dy
        az(ja) = az(ja) - aij*dz

enddo
    j = j + 1 + ia_pairs
enddo
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Gather operation moving
rx(ja), ry(ja), rz(ja) 

for 4 successive ja values 
into the vector registers

Scatter operation moving
ax(ja), ay(ja), az(ja)

for 4 successive ja values 
out of the vector registers. 



209

• C = A+B
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into/out of vector registers 
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• LLC misses 0.008 %
• LJ_force_factor2      0.59 cpi
• Compute_interactions 0.77 cpi

• cpi at best 0.25
• cpi ≤ 1 considered acceptable in HPC

• There is still room for improvement 
• No more low hanging fruit, though

What do the intel tools tell?
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• Assembly code
• Architecture dependent code
• Libraries for writing explicit vector code
• Architecture independent code
• C++ only
• Vc (github.com/VcDevel/Vc)
• Boost.simd (github.com/NumScale/boost.simd)
• Similar performance
• Rewrite algorithm in terms of vector operations 

rather than scalar operations

Beyond auto-vectorisation
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• Gain:
• 120–127 106 interactions per second (instead of 90 106)
• 30% improvement
• Not bad, but not effortless (took me about 1½ week)
• AVX2 will probably do even better
• Coding details in other talk

Beyond auto-vectorisation
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1. Data access pattern is crucial to performance

Conclusions
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• Monte Carlo case (3N reads, no writes)
• Contiguous data access: 
• 450 106 interactions/s
• Bandwidth saturation (machine limit)
• Random access:
• Performance drops by factor 15 (cache misses, gather/scatter)

Conclusions
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• Bandwidth saturation means that the CPU is waiting 
for the data to arrive
• Try to do more computations with the data that is available, 

e.g.:
• Additional computations
• A more complex model

• Program will not run faster but will do more work in the same 
time

Conclusions
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• Molecular dynamics case (6N reads, 3N writes + VL)
• Contiguous data access: 
• 90 106 interactions/s
• No machine limits hit
• gather/scatter  
• Random access:
• Performance drops by factor 7
• Spatial sort fixes the problem

• Fixing the data access pattern is not always easy
• Involves usually some form of sorting the data

Conclusions
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1. Data access pattern is crucial to performance
2. Spatial sort using space filling curves is 

useful technique for fixing data access 
patterns

Conclusions
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1. Data access pattern is crucial to performance
2. Spatial sort using space filling curves
3. Intel tools (Advisor, VTune) provide useful 

clues to optimizing your code
• Hot spots
• The nature of hot spots (data access, expensive 

instructions, …)
• Issues with vectorization

Conclusions
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1. Data access pattern is crucial to performance
2. Spatial sort using space filling curves is useful
3. Intel tools (Advisor, VTune) provide useful clues
4. Fortran has many advantages for 

programming number-crunching routines
• F2py for producing python modules 

Conclusions
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Python/Fortran/C++

231

Python/Numpy
• verify code correctness
• generate FCC lattice
• generate arrays filled 

with random numbers
• generate permutations
• zero accelerations 

between time steps
• build Verlet list
• spatial sort of atom 

property arrays
• define coarse 

computational strategy 
and data structures

• control  and initialize 
the experiments

• plot results

Fortran
• Lennard-Jones potential
• Lennard-Jones forces
• iterate over Verlet list 

and compute 
interactions

• iterate over array and 
compute interactions 
(baselines)

C++
• compute hilbert indices
• build Verlet list
• iterate over Verlet list 

and compute inter–
actions using simd
libraries

code 80%
cputime 5%

code 10%
cputime 90%

10%
cputime 5%

Speedup of 1200x !



1. Data access pattern is crucial to performance
2. Spatial sort using space filling curves is useful
3. Intel tools (Advisor, VTune) provide useful clues
4. Fortran has many advantages
5. Use a simple but relevant baseline that you 

understand to judge the performance of your 
code and direct your efforts

Conclusions
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1. Data access pattern is crucial to performance
2. Spatial sort using space filling curves is useful
3. Intel tools (Advisor, VTune) provide useful clues
4. Fortran has many advantages
5. Use a simple relevant baseline
6. Be aware of the machine limits
• Bandwidth
• Peak performance
• Roofline model

Conclusions
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1. Data access pattern is crucial to performance
2. Spatial sort using space filling curves is useful
3. Intel tools (Advisor, VTune) provide useful clues
4. Fortran has many advantages
5. Use a simple relevant baseline
6. Be aware of the machine limits
7. SIMD libraries are useful 
• Vc, Boost.simd

Conclusions
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1. Data access pattern is crucial to performance
2. Spatial sort using space filling curves is useful
3. Intel tools (Advisor, VTune) provide useful clues
4. Fortran has many advantages
5. Use a simple relevant baseline
6. Be aware of the  machine limits
7. Simd libraries are useful

Thank you

You are always welcome to discuss your 
(computational) problems

Conclusions
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