HPC-TNT-1.2 fall 2016

Universiteit
Antwerpen

ANNIE CuyT L] STEFAN BECUWE] FRANKY BACKELJAUW [KURT LusT L] ENGELBERT TIJSKENS

Vlaams Supercomputer Centrum

. A practical approach
. To build efficient applications
- To understand performance issues

Some computer architecture concepts related to performance and
machine limits
. Levels of parallelism - peak performance

- Memory on modern CPUs - bandwidth, latency

Examplel [toy problem]
- Atomic system interacting through a Lennard-Jones potential
- Monte Carlo setting

Example 2
- Atomic system interacting through Lennard-Jones potential

- Molecular dynamics setting

Optimizing code & optimizing data access
- Spatial sorting using space filling curve

Choosing a programming language

Levels of parallelism

A little terminology

- A (compute) node in a cluster is basically a PC without all
the peripheral devices

. Nodes are connected through a fast network:
interconnect

- Every node has several sockets, each of which contains a
processor

- Every processor contains many cores

- Each core can simultaneously execute one task: thread

. Simultaneous multi-threading : more than one thread per core
. Usually switched off on clusters

. Thread executes a sequential stream of instructions

Interconnect
(Infiniband)

Terminology

Interconnect
(Infiniband)

Terminology

Interconnect
(Infiniband)

Interconnect

(Infiniband)

Terminology

®

Xeon® E5-2600 v2 Xeon® E5-2600 v2

Xeon" €5-2600v2

Interconnect
(Infiniband)

10

logy

©
o
=
-
v
=

Xeon® E5-2600 v2

Xeon® E5-2600 v2

€5-2600v2

Xeon" €5-2600v2
Xeon" €5-2600v2
Xeon" €5-2600v2

Xeon"

Xeon' £5-2600v2
Xeon' £5-2600v2

Interconnect
(Infiniband)

COPPOPIPPIPPPOPIPOPIPOPIOPIOPOPP

COPPOPIPPIPOPIPOIPOPIOPOPIOIIOPOPS

-

)
1

LR

logy
N ee e
[100 ey

L)
LN
UM BB A
)

-

-
v
- -

FEFPPREPP P PCOPP PP IOPP
CPOPPPPPPPPIPPIPPIOPIOPOPS

©
=
=
-
v
=

000000000000,
e00roc00s0000

Xeon® E5-2600 v2

Xeon® E5-2600 v2

€5-2600v2

Xeon" €5-2600v2
Xeon" €5-2600v2

Xeon"

Interconnect
(Infiniband)

11

COPPOPIPPIPPPOPIPOPIPOPIOPIOPOPP

12

y COPOPPPCPPPPPPPOPPIPOPOOOPP
= o o o
g 2 M M .-—_-“”
o = o o
- = - =
O - K
[o - - e
- = = @ =
g
—
(()) P PP PP PPPPPPPPPPPP4
_ COPPPPPPPIPPPPPPOOPPP
=
o N
3 >
i o
w
® 8 e
c
8 © > s Q
, a0 o
rn O <© o A
Ll (G- (. L. o
< O O O , S
— e n — (-
8 T 9 0 0 @ 9O <
& O ¥ < < % O
1 .« € O O O < o o
3 Q O Y“ o 0o ¥* m m
w. - N = N = 0N N
L e o ° ° ° e o

Xeon" €5-2600v2
Xeon" €5-2600v2
Xeon" €5-2600v2

Interconnect
(Infiniband)

. Several nodes can cooperate on a task
- Distributed memory parallellization

- Nodes communicate information via interconnect
- Typically using MPI: Message Passing Interface

. Several cores can cooperate on a task
- Shared memory parallellization

. Cores communicate information via memory
. Often using OpenMP, but also MPI, ...

13

3. A single core may exploit pipelining and
vectorisation to execute instructions in parallel

14

. Instructions break down in micro-instructions

. Each micro-instruction uses a distinct part of the

hardware

1.

v s W

Instruction fetch (IF)
Instruction Decode (ID)
Execution (EX)

Memory Read/Write (MEM)
Result Writeback (WB)

[https://en.wikibooks.org/wiki/Microprocessor_Design/Pipelined_Processors]

15

gou

IF {ID| =5 MEM | WB
li IF|ID|EX|MEM | WB

IF |ID |EX | MEM | WB

16

IF {ID| =5 MEM | WB
li IF|ID|EX|MEM | WB

IF |ID |EX | MEM | WB

j F | ID | EX [=0] wB
o IF | ID WB
IF MEM | WB
EX |[MEM| WB

5 instructions executing
simultaneously
17

Register 1 [A,]

Register 2 [B,-]

Register 3 [C,-]

Register 1 [A,]

+

Register 2 [B,-]

Register 3 [C,-]

/Load 2 operands in register
Execute 1 add instruction
\Store 1 result

~

19

Register 1 []

N AA
|5 55
ec[tr C, | C,

|

0]

A
+V
Register 2 [B;
C

Execute 1 vadd instruction
KStore 1x4 results

KLoad 2x4 operands in register\

J

Register 1 []

N AA
|5 55
ec[tor C, | C,

|

A
+V
Register 2 [B;
C

Execute 1 vadd instruction
KStore 1x4 results

KLoad 2x4 operands in register\

J

: Single Instruction -

Multiple Data

~ (SIMD)

J
21

VLAl

Register 1A A/ |A A [Potentially4x

faster
| ,. *vector [if the loads and
Register 2 [B,][BJ[BK} [B/} stores can be
executed fast

—vector \ enough] /

KLoad 2x4 operands in register\ - Single Instruction -
Execute 1 vadd instruction Multiple Data
KStore 1x4 results (SIMD)

PN

. Fused instructions: Fused Multiply-Add executes
y = a*x+b (in vector mode
in one cycle

. Vector register width on Hopper is 256 bits
. 8 single precision numbers
- 4 double precision numbers

23

. 3 levels of parallellism:
. Intra-core: pipelining and SIMD

. Multi-core: shared memory

- Multi-node: distributed memory

24

. 3 levels of parallellism: - Who does the work?

. Intra-core: pipelining and SIMD . Compiler

. but it appreciates/needs
your help

. Multi-core: shared memory - You and the compiler
- OpenMP = directives
- Relatively simple

. Multi-node: distributed memory - You only
- MPI
- Harder

25

1. Monte Carlo setting:
compute the energy of configurations
ensemble averages
no (individual) forces, accelerations or velocities
no time integration

2. Molecular Dynamics setting:
. compute the time evolution of a collection of atoms
- Individual forces, accelerations, velocities
. [time integration]

26

MC experiment

. Compute the potential energy of a system of N
atoms: Zi<j VL](rij)
. Doing this for all atoms is a 0(N?) approach

- we do it only for a single atom just for the purpose of
illustrating the behavior of the hardware (toy problem)

- XV (rif)
. Techniques to reduce to O(N) will be discussed in
MD setting

- We will only consider single core performance
- That is the first thing to optimize anyway
- Already complex enough for a single lecture
. SIMD and pipelining are the only level of parallelism

27

gou

: Lennarc'j-Jones potential (neglecting constants)

S
~
ﬁ
—/
|
|
]
b|
i
l
i
i
’.

double VLJO(double r) {
return 1./pow(r,12) - 1l./pow(r,6);

}
double VLJ1l(double r)_{

return std::pow(r,-12) - std::pow(r,-6);
}

double VLJ2(double r) {
double tmp = std::pow(r,-6);
return tmp*(tmp-1.0);

}

double VLJ3(double r) {
double tmp = 1.0/ (r*r*r*r*r*r);
return tmp*(tmp-1.0);

}

double VLJ(Real t r) {
double rr = 1./r;
rr *= rr;
double rr6 = rr*rr*rr;
return rré6*(rr6-1);

// 18.0

// 14.

/7 1.

9

8

// 1.01

//

1

slower

slower

slower

slower

slower

double VLJ(Real t r) {

double rr = 1./r;

rr *= rr;
double rr6 = rr*rr*rr;
return rré6*(rr6-1);

}

double VLJ(Real t r2) {
double rr = 1./r2;

double rr6 = rr*rr*rr;

return rré6*(rr6-1);

} // avoid one sqrt per function

// 1 x slower

call (to compute the distance r)

- cheap instructions +,-,* ~1 cycle

. Rather expensive / ~10-20 cycles
- Expensive sqrt ~35 cycles
- Very expensive trigonometric/

logarithmic/

exponential functions ~100-200 cycles

- Things get better if pipelining can be exploited

- Relative cost remains

. X0, y0, z0 : coordinates of our central atom

- X1[1:m], y1[1:m], z1[1:m] : coordinates of m
neighbouring atoms

. Let m=512, 1012, ..., 2%2°~0.5*%10°

. surround by outer loop iterating 22°/m times

. every m-case executes 222 evaluations of V;(r?)

.- Variations

. Loop over all m neighbouring atoms contiguously
. Structure of arrays (SOA) : XXX ...YVYVY...Z222Z...
- Array of structures (A0S) : Xy z..Xyz..Xyz...

- Pick atoms in the arrays x1, y1, z1 with a random
permutation

32

integer :: m ! # of neighbour atoms

integer :: k ! # of iterations, mxk=cst, same amount of work per iteration
real(wp) :: x0,y0,z0, p(3*m)

I Contiguous access, SoA: p=[xxX..yyy..zzz..]

do ik=1,k
do im=1,m
r2 = (p(im)-x0)*x2 +(p(m+im)-y0)**2 +(p(2xm+im)—-z0)**2
v =V + 1j_pot2(r2)
enddo
enddo

33

integer :: m ! Number of neighbour atoms
real(wp) :: x0,y0,z0, p(3*m)
I ordered access, AoS: p=[xyzxyzxyz..]
do ik=1,k
do im=1,m
r2 = (p(im)-x0)**x2 +(p(1+im)-y0)**x2 +(p(2+im)-z0)*x*2
v =V + 1j_pot2(r2)

enddo
enddo
1 |Ix |y |z
2 X |y |z
3 X |y |z

34

integer :: m ! Number of neighbour atoms
real(wp) :: x0,y0,z0, p(3*m)

integer :: j(m) ! random permutation of [1:m]

! random access
do ik=1,k
do im=1,m
r2 = (p(j(im))-x0)*%x2 +(p(j(im)+m)-y0@)**x2 +(p(j(im)+2%m)—-z0)**2
v =V + 1j_pot2(r2)

enddo
enddo
1 X Yy Z
2 X Yy Z
3 X Yy Z

35

25

20

cpu time [s]
o

=
o

I U

e—e contiguous SoA
e—e contiguous AoS

*—o

random access

5 6
logl0(array length)

36

25

20

cpu time [s]
o

=
o

I U

*—o
*—o
*—o

contiguous SoA
contiguous AoS
random access

Q1: What is
going on?

5 6 7 8 9
logl0(array length)

37

25

20

cpu time [s]
o

=
o

I U

e—e contiguous SoA
e—e contiguous AoS

*—o

random access

5 6
logl0(array length)

Q2: is this the
best we can get?

38

- Which factors influence performance of a code?
. Machine limits

39

. ¥ Maximum # floating point operations per second

.- For a single core the peak performance =
. 2*8 instructions per cycle in SP

. 2*4 instructions per cycle in DP
- The 2 comes from the fused multiply and add
- The 8, resp. 4 come from the vector register width

. Peak performance per node
- (1 cycle = 1/clock_frequency)
- Assuming 1 hardware thread per core:
. (#cores=20) * 2*8(SP) * (f=2.8Ghz) = 896 Gflop/s
. (#cores=20) * 2*4(DP) * (f=2.8Ghz) = 448 Gflop/s

40

Performance

. Peak performance is not the only limiting factor...
. It is not the most common limiting factor

. Instructions operate on data, ...

. Data resides in memory

- Accessing data takes time (and energy)

.- Data has to be moved from memory to cpu register before it
can be processed

. Peak performance has increased much faster than
the speed at which data can be moved between
memory and cpu

41

. Memory bandwidth

- The maximum number of bytes that can be moved per
second between main memory and the cores

. Hopper
- 92-110 GB/s (varies depending on read:write ratio)

- Memory latency

- The number of cycles (or the time) needed to fetch a single
item from main memory

- Hopper
. ~180 cycles (within socket)
. ~350 cycles (across sockets)

42

Performance

. Code is compute bound if

- The cpu can execute its compute instructions without having
to wait for data

- The limit is the theoretical peak performance
- [Used to be the common case - not any more]

. Code is memory bound if
- A considerable amount of cycles is spent waiting for data
. Too much data requested:
- Bandwidth saturation = machine limit

. Too distant data requested:
- If data is not in the cache: latency penalty
- Latency problem = machine limit

- [most common situation]

43

Computational intensity I, = flops per Byte

= flops per second

Performance

Computational intensity I, = flops per Byte

= flops per second

Performance

Computational intensity I, = flops per Byte

peak performance

©
c
o)
O
()
(%)
-
)
o
(%)
Q.
®)

&

Performance

Computational intensity I, = flops per Byte

peak performance

= flops per second

Performance

Compute bound

Computational intensity I, = flops per Byte

peak performance

= flops per second

Performance

Memory bound Compute bound

Computational intensity I, = flops per Byte

peak performance

= flops per second

Performance

Memory bound Compute bound

Running at peak performance
Bandwidth not saturated
Energy efficient computation
(Moving data costs more
energy than executing
instructions)

peak performance

Computational intensity I, = flops per Byte

Bandwidth saturated

Running below peak performance

Not energy efficient

= flops per second

Performance

Memory bound Compute bound

Running at peak performance
Bandwidth not saturated
Energy efficient computation
(Moving data costs more
energy than executing
instructions)

peak performance

Computational intensity I, = flops per Byte

Bandwidth saturated

Running below peak performance

Not energy efficient

= flops per second

Performance

Sweet spot: Running at peak performance

All resources optimally used: Bandwidth not saturated
Bandwidth saturated Energy efficient computation
Running at peak performance (Moving data costs more
energy than executing
instructions)
Memory bound Compute bound

_______ =\ —————— peak performance

Computational intensity I, = flops per Byte

Bandwidth saturated

Running below peak performance

Not energy efficient

= flops per second

Performance

Sweet spot:

All resources optimally used:
Bandwidth saturated

Running at peak performance

Memory bound Compute bound

Running at peak performance
Bandwidth not saturated
Energy efficient computation
(Moving data costs more
energy than executing
instructions)

peak performance

S\

S Running below all

machine limits

* Mixture of compute
bound and memory
bound sections

» Cache misses

» Expensive instructions

Computational intensity I, = flops per Byte

Roofline model

: Sweet spot: Running at peak performance
Bandywdth saturated All resources optimally used: Bandwi%th not saturated
Running below peak performance Bandwidth saturated .)
Not energy efficient : Energy efficient computation

Running at peak performance (Moving data costs more
energy than executing
instructions)

A
2 Memory bound Compute bound
O
R N\ mm————— peak performance
(%)
| -
v
o
(%2
Q.
O
“'IT Running below all
w machine limits
O * Mixture of compute
c
© bound and memory
& bound sections
o) Memory bound = - Cache misses
T most common - Expensive instructions
) situation
(a ¥

>

Computational intensity I, = flops per Byte

Memory bound - consequences

. Optimizing code was about organizing compute
instructions
. Pretty straightforward: less compute cycles is less cputime
- Algorithmic complexity was important guideline

.- Optimizing code is optimizing data access
. To keep the processor busy doing useful stuff

- Algorithmic complexity is no longer a guarantee for
optimal performance

- E.qg. linear search (as in a map) often faster than binary or other
search algorithms, also sorting

- For large N low order complexity wins, but hardware caching
takes an early lead

. Understanding how memory works is necessary
. Experimenting and measuring is necessary

56

G Hierarchical memory organisation

_ ALU i memory
< ;| size

>

% Registers: ~1kB per core 0 cycles

N x

W L1 Cache: 32 kB per core ~1 cycles

o 3

G . L2 Cache: 256 kB per core ~10 cycles

i o ,.

O

L3 Cache: 25 MB per socket ~50 cycles

o
=
u‘.:’ DRAM: 64-256 GB per node ~200 cycles
O

. Memory is not fetched on a per item basis

. But in chunks called cache lines
. typically 64 Bytes long
. 16 single precision items
- 8 double precision items

58

Memory organisation

- Linear search of array A[i], i=1..n

- A[1] is not in cache, wait time before cache line is loaded,
dram latency (~200 cycles) and before item A[1] can be
examined

- Once the cache line is loaded, A[2..16] are also in L1 cache
and are ready to be examined without delay

- Hardware recognizes your loop over the array and keeps
loading next (or previous) cache lines into the L1 cache, so
that the delay is vanishing

- Depending on how much work it takes to examine each
item, as soon as item A[16], the next cache line A[17:32]
may have been loaded already or not

- In any case, the wait time is now less than the dram latency
(~200 cycles)

.- The limitation becomes memory bandwidth of the machine

59

- Binary search of array A[i], i=1..n

- A[n/2] is not in cache, wait time before cache line is loaded,
dram latency

- Next item needed is A[n/4] or A[3n/4], which is not in the
cache, dram latency hits you again

- In fact, the dram latency keeps on hitting you until the
search range is reduced to one or two cache lines,

- You do only one examination/dram latency, as opposed to
16/dram latency in linear search.

60

. Instructions are also data stored in memory

- Branching instructions can cause cache misses too!
- Instruction cache misses

. Avoid unpredictable branches in loops

61

. code::dive conference 2014 - Scott Meyers: Cpu
Caches and Why You Care

. https://www.youtube.com/watch?v=WDIkqP4JbkE

62

30
— L1
— L2 o
25+ —
L3 ' o
e—e contiguous SoA
|| & contiguous AoS b
(| e random access
o $
() [
E 15 |
> /
Q. f
U II
10 -
o
»»__.,»/0‘*.“0—0—0
lg- t-.
o 1 1 1
0 5 10 15 20
log10(mem used [kB])

25

Q1: What is
going on?
15x slower

63

30
— L1
— L2
25K — L3
e—e contiguous SoA
e—e contiguous AoS
201 6 o random access

cpu time [s]
o

=
o

T

T

15

1

20

25

log10(mem used [kB])

Mem used = 3*'m*8 Bytes

Q1: What is
going on?
15x slower

64

Cache boundaries

T

30

T

25

N
o
T

— L1
— L2
— L3
e—e contiguous SoA
e—e contiguous AoS

e—e random access

cpu time [s]
o

=
o

T

T

1

15

5|
.,,.—4—%.'
lg t-c

1

20

25

10
log10(mem used [kB])

Mem used = 3*'m*8 Bytes

Q1: What is
going on?
15x slower

65

30
— L1
— L2 o
25+ —
L3 ' o
e—e contiguous SoA
|| & contiguous AoS b
(| e random access
o $
() [
E 15 |
> /
Q. f
U II
10 -
o
»»__.,»/0‘*.“0—0—0
lg- t-.
o 1 1 1
0 5 10 15 20
log10(mem used [kB])

25

Q2: is this the
best we can get?

66

r2 = (p(im)-x0)**2
+(p(mM+im)-y0)**2

+(p(2*m+im)-z0)**2 . 3-, 24+, 3*
! r = lj_pot2(r)
r2i = 1.0d0/r2 .1/
rr6i = r2i*r2i*r2i; . 2%
lj_pot2 = 4.0d0*rr6*(rr6-1.0d0); . 2%, 1-
14 flops

. 14 flops * 222 iterations in 1.2 s = 6.26 10° flops/s

. peak performance:
1*1*4*2.8 GHz = 11.2 Gceycles/s = 11.2 Gflops/s

. We are running at 55.9 % of peak performance

67

30 - - T T
— L1 o-
— L2 .f__,,_.f"’ °
5 H y |
L3 . o
e—e contiguous SoA
|| & contiguous AoS b
| e random access | |
v
Q
_g 15+ -
=
o
(@)
10 | x
»»__.,»/0‘*.“0—0—0
lggQ
o 1 1 1
5 10 15 20 25

log10(mem used [kB])

Q2: is this the
best we can get?

Not really, there
is 44% room for

improvement

68

30
— L1
— L2 o
25+ —
L3 ' o
e—e contiguous SoA
|| & contiguous AoS b
(| e random access
o $
() [
E 15 |
> /
Q. f
U II
10 -
o
»»__.,»/0‘*.“0—0—0
lg- t-.
o 1 1 1
0 5 10 15 20
log10(mem used [kB])

25

Q3: why aren’t we
running faster

69

r2 = (p(im)-x0)**2
+(p(m+im)-y0)**2

+(p(2*m+im)-z0)**2 - 3-,2+,3* . 3DP
! r = lj_pot2(r)
r2i = 1.0d0/r2 .1/
rr6i = r2i*r2i*r2i; . 2%
lj_pot2 = 4.0d0*rr6*(rr6-1.0d0); . 2%, 1-
14 flops - 24 B

. 24 B *229 jterations in 1.2 s = 10.7 GB/s

.- Bandwidth measured by Intel mic:
- 109 GB/s for 10 threads (all reads)
- 10.9 GB/s for 1 thread

- We are running at maximal bandwidth

- Bandwidth saturation .

30

25

N
o

cpu time [s]
o

e—e contiguous AoS
e—e random access

=
o

— L1

— L2

— L3

e—e contiguous SoA
o

Q2: is this the best

we can get?
Yes and No

No: We are

processing the
maximum amount of

{data in the give time

(but the processor is
idle for 44% of the

time).

Yes: We can improve
if we can do more
useful work on the
|data while they are
in cache.

25

log10(mem used [kB])

ﬂ,‘
i | oo ® 00§
0 1 | |
0 5 10 15 20

71

12

Peak performance
11.2 Gflops/s

performance [Gflops/s]

10

Roofline for a 1 core job on a hopper node

b — —_— —_— - —_— —_— -

2 3
Computational intensity [flops/byte]

72

12

Peak performance
11.2 Gflops/s

performance [Gflops/s]

10

Roofline for a 1 core job on a hopper node

b — —_— —_— - —_— —_— -

Computational intensity [flops/byte]

. NG
Q
)
=
1l
S
i XS] Ordered data access
S MEMORY BOUND!
3’5 56% of peak performance
1
i o
&
%)
o . . .
0 1 2 3 4

73

12

Peak performance
11.2 Gflops/s

performance [Gflops/s]

10

(o0}

Roofline for a 1 core job on a hopper node

b — —_— —_— - —_— —_— -

Can we improve?

We can do more useful work with the

increase the computational intensity

(%]
i CLDB On first sight: bandwidth saturated
= Thinking again:
/]
i .§ Ordered data access data while they’re in cache =
S MEMORY BOUND!
& 56% of peak performance E.g. implement something more
f accurate than Lennard-Jones
i o
&
%)
. 1 | | |
0 1 2 3 4 5

Computational intensity [flops/byte]

74

12

Peak performance
11.2 Gflops/s

performance [Gflops/s]

10

(o0}

Roofline for a 1 core job on a hopper node

b — —_— —_— - —_— —_— -

Can we improve?

We can do more useful work with the

increase the computational intensity

(%]
i CLDB On first sight: bandwidth saturated
= Thinking again:
/]
i .§ Ordered data access data while they’re in cache =
S MEMORY BOUND!
& 56% of peak performance E.g. implement something more
f accurate than Lennard-Jones
i o
&
%)
. 1 | | |
0 1 2 3 4 5

Computational intensity [flops/byte]

75

12

Peak performance
11.2 Gflops/s

performance [Gflops/s]

10

(o0}

Roofline for a 1 core job on a hopper node

- —_— —_— —_— —_— - -

Can we improve?

We can do more useful work with the

increase the computational intensity

(%]
i CLDB On first sight: bandwidth saturated
= Thinking again:
/]
i .§ Ordered data access data while they’re in cache =
S MEMORY BOUND!
& 56% of peak performance E.g. implement something more
f accurate than Lennard-Jones
i o
&
%)
. 1 | | |
0 1 2 3 4 5

Computational intensity [flops/byte]

76

12

Peak performance
11.2 Gflops/s

performance [Gflops/s]

10

(o0}

Roofline for a 1 core job on a hopper node

Can we improve?

We can do more useful work with the

increase the computational intensity

(%]
i CLDB On first sight: bandwidth saturated
= Thinking again:
/]
i .§ Drdered data access data while they’re in cache =
S MEMORY BOUND!
& 56I’/o of peak performance E.g. implement something more
f accurate than Lennard-Jones
i o
S
%)
. 1 | | |
0 1 2 3 4 5

Computational intensity [flops/byte]

77

12

Peak performance
11.2 Gflops/s

performance [Gflops/s]

10

Roofline for a 1 core job on a hopper node

b — —_— —_— - —_— —_— -

Computational intensity [flops/byte]

(%]
= NS
Q
O
=
/]
5 S
9
5
<
T
Q
/]
i o
S
%)
L Random data access
Dominated by cache misses
3% of peak performance
. 1 1 1 1
0 1 2 3 4

78

12

Peak performance
11.2 Gflops/s

performance [Gflops/s]

10

(o0}

Roofline for a 1 core job on a hopper node

(%]
- NS -
Q
O
=
/]

L S §

9

5

IS

©

Q
I §
i o
S
%)
5 Can we improve?
First: improve data access pattern to
reduce the cache misses
L Random data access
Dominated by cache misses Then: if bandwidth saturates
3% of peak performance increase the computational intensity

e 1 1 1 1 |

0 1 2 3 4 5

Computational intensity [flops/byte]

79

12

Peak performance
11.2 Gflops/s

performance [Gflops/s]

10

(o0}

Roofline for a 1 core job on a hopper node

Can we improve?

First: improve data access pattern to
reduce the cache misses
Random data access

Dominated by cache misses Then: if bandwidth saturates
3% of peak performance increase the computational intensity
e 1 1 1 1 |
1 2 3 4 5

Computational intensity [flops/byte]

80

12

Peak performance
11.2 Gflops/s

performance [Gflops/s]

10

(o0}

Roofline for a 1 core job on a hopper node

Can we improve?

First: improve data access pattern to
reduce the cache misses
Random data access

Dominated by cache misses Then: if bandwidth saturates
3% of peak performance increase the computational intensity
e 1 1 1 1 |
1 2 3 4 5

Computational intensity [flops/byte]

81

. For simple cases
- a back of the envelope calculation like this
- and an understanding of how memory works

can guide you to more efficient code

. For real cases we need something more
sophisticated

82

. Intel Advisor xe
- Vectorization and threading

. Intel VTune Analyzer xe
. Data access and cpu utilization

. Intel Inspector
- Thread performance analysis (OpenMP, Intel TBB)

. Intel Cluster Inspector
. MPI process performance analysis

83

. Intel Advisor xe

- Vectorization and threading

. Intel VTune Analyzer xe
. Data access and cpu utilization

For.a later session

84

- https://software.intel.com/en-us/get-started-with-advisor
- https://software.intel.com/en-us/get-started-with-vtune

85

VLAl
a5 o

$ssh —X vsc20170@login.hpc.uantwerpen.be
Last login: Thu-Sep 8 16:38:25 2016 from 143.169.185.55

I
Welcome to Hoppe r: Allow X11 forwarding. On macOS install

e XQuartz, On Windows install Xming
vsCc20170@1Ln02 ~$

Start interactive job with X11 forwarding.
vsCc20170@1ln02 ~$ gqsub —I —X
vsc20170@r5c6cnd5 "V$ The compute node we are running on
vsc20170@r5c6cn®5 ~$ module load Advisor
vsc20170@r5c6cn@5 ~$ module list
Currently Loaded Modulefiles:

1) Advisor/2016_update4d

VSC2®170@I"5C6CH@5 ~$ & = Run in background, so the
vsc20170@r5cbcn@5 ~$ advixe—gqui & terminal remains functional

86

[NON | [x] lusérlan‘twérpen/201lvsc20170ﬁntel/advixelprojectslppmd1 - Intel Advisor

Fle View Help

‘B Bae EETBRAN SO

'Project Navigator
- Welcome 3
fls /user/antwerpen/201/vsc20170/intel/advixe/p...

& ppmdo2

~ @R

& 000

(?) Getting Started

Welcome to Intel Advisor XE 2016

Vectorization Optimization and Thread Prototyping
Current project: ppmdl

New Project...
Open Project...
= Open Result

Recent Projects:

87

® OO0 '\| Create a Project

Project name: |test

Location: }'verpen/201/vsc20170/mte|/advixe/projects Browse...l

Create ProjectI Cancel |

P
—_—

88

Intel Advisor

X| test - Project Properties

Analysis Target I Binary/Symbol Search I Source Search |

¥ [survey Analysis Typc |survey Launch Application LI
Ldsurvey Htspots Specify and configure the application executable (target) to analyze. Press F1 for (] X/ Select File
T Survey Trip Count | more details.
Suitability Analysi E, i
L y Y g . ’0 No application executable (target) file specified. ZN |b pec20T0 | e | neon | pemdol (B
~ 7 Refinement Analysi: — -
@ Dependencies An | Application: | ﬂ Browse... Places | Name v |Size | Modified | —
A Memory Access F @ 3 i
Application parameters: | ﬂ Modify... A search RBavisog Friday
_ 1 ® Recently Used [~ ppmd01.dSYM 09/05/2016
Use application directory as working directory & ppmdo1 [md.optrpt 813KB 09:36
Working directory: | ﬂ Browse... 1 [vsc20170 Il ppmdol 792.0 KB 11:31
H ' File System [7) ppmdo1.optrpt 217KB 11:31
User-defined environment variables: [prec.optrpt 12KB 11:31
| Modify... 4 [util_random.optrpt 82KB 11:31
| wprec.optrpt 12KB 11:31
Child application: lcome
[Analyze loops that reside in non-executed code paths orization (I
~ @ Advanced R
© int project:
Sampling interval: 10 E
Collection data limit, MB: [100 " |\project...
J 0| Resume collection after ms- 10 = | in Project...

oK I Cancel |%SUIt
R&¢ent Projecty & — Allfiles (+) |+

3¢ cancel | /= Open

[l

89

Intel Advisor

|X| test - Project Properties

Analysis Target I Binary/Symbol Search | Source Search I

¥ [Survey Analysis Typt
¥ urvey Hotspots
T Survey Trip Count
W suitability Analysi
v [7 Refinement Analysi:
% Dependencies An
~ Memory Access F

|Survey Launch Application LI

Specify and configure the application executable (target) to analyze. Press F1 for
more details.

| »

Application: |data/neon/ppmel/bin/ppmd01| v Browse...

Application parameters: | v Modify...

Use application directory as working directory

Working directory: |/user/antwerpem’201/vsc 20170 = Browse...

User-defined environment variables:
| Modify...

Child application: I

[] Analyze loops that reside in non-executed code paths

~{~ Advanced

Sampling interval: |10 I:]

Collection data limit, MB: 100

Resume collection after, ms: Io E]

90

[NON] . .[X] /hser/;ntwerpen/201lvsc20170/inteIIadvixelprojects/test- Intei A&visor

File View Help
kb Ba TR AYN SO

Welcome] €000 3 | v

%2 survey Report | § notation

A\ No Data

To collect data about your application's performance, compile your application with
Release build settings and run Survey analysis.

91

Function Call Sites and Loops

Vector Issues

FILTER: |All Module _~ | |All Sources
& Annotation Report

Self Timew

& Where should | add vectorization and/or threading parallelism?

clapsed time: 216289 [Veckaned] [ok Vegkared 7]

@ Ssummary % Survey Report ' @ Refinement Reports

~ & Higher instruction set architecture (ISA) available

Your application was compiled using an ISA lower than the ISA available on this machine. Consider recompiling your application: on this machine
using the highest ISA available - use the xHost option, or on the original machine for a higher ISA - use the x option.

Total Time Type

~_~ ||Loop_~ ||All Threads

‘ Why No Vectorization?

Vectorized Lc

" [loop in fill_uniform_integer at util_rando ...

315 [loop in experimentl at ppmd01.f90:73]

515 [loop in ppmd01 at ppmd01.f90:26]

% [loop in fill_uniform_real at util_random.f9...
% [loop in fill_uniform_real at util_random.f9...

5 [loop in fill_uniform_real at util_random.f9...
% [loop in fill_uniform_real at util_random.f9...

oooooog e

¢ 1 Data typec...
¢ 1 Inefficient m..

@ 2 Assumed de....

@ 1 Serialized us ...
@ 1 Serialized us ...

15.657smmm 15.657smmm Vectorized (Body)

1.210s1
1.000s1
0.981s1
0.976s1
0.359s(
0.000s(

1.210s1 Vectorized (Body)

1.000s1 Vectorized (Body)
0.981s1 Scalar

0.976s1 Vectorized (Body)
0.359s(Vectorized (Body)

20.183s mmm Scalar

@ vector dependence ...

@ loop with function cal...

Vect... | Effici
SSE2 [10(
SSE2 [FI0(
SSE2 [FI0(

[F1o¢
SSE [FI0C

92

~ & Higher instruction set architecture (ISA) available

Your application was compiled using an ISA lower than the ISA available on this machine. Consider recompiling your application: on this machine
using the highest ISA available - use the xHost option, or on the original machine for a higher ISA - use the x option.

. Add compiler option —xHost

93

25

20

=
(9

T

LITDT

cpu time [s]

[
o

L1
L2
L3
contiguous SoA
contiguous AoS
random access
random -xHost

Slight improvement

5 10 15 20
log10(mem used [kB])

25

94

25

20

=
(9

T

LITDT

cpu time [s]

[
o

L1
L2
L3
contiguous SoA
contiguous AoS
random access
random -xHost

Slight improvement
But not what we hoped for

10 15 20 25

log10(mem used [kB])

95

@ Where should | add vectorization and/or threading parallelism?

Elapsed time: 220.37s [Vectorized] [Not Vectorized| "] FILTER: |All Module_~ ||All Sources _~ [|Loops "~ ||aii Threads |

@ Summary %% Survey Report ‘ & Refinement Reports () Annotation Report

P

‘Vectonzed Loops E‘ Instruction Set Analysis E\‘ B
Function Call Sites and Loops &~ Vector Issues Self Time Total Time Type ‘Why No Vectorization? - - - - Advanced Location
|vect... |Efficiency [Gain ... VL .. Traits Data Types | Number of Vector Registers |
[+ [loop in experiment1 at ppmd01.f90:134] [m] 4.034sEmE 4.034sEEE Vectorized (Body) wx [E78% "]304x 4 Divisions; Inserts Float64 10 ppmdo1.f90:134
[[loop in fill_uniform_integer at util rando... ~ [] 1 Data type conversions present 0.254s1 0.254s1 Vectorized (Body) Avx [FD00% _]4.96x 4 shifts; Type Conversions Float64; In... 5 util_random.f90:5-
[loop in fill_uniform_real at util_random.f9... [] ¢ 1 Inefficient memory access patterns .. 0.170s{ 0.170s1 Vectorized (Body) Avx [FE00%]430x 4 Float64 10 Unrolled by 4 util_random.f90:3
5 [loop in fill_uniform_real at util_random.f3... [J 0.15651 0.15651 Vectorized (Body) Avx [FEO0% T]437x 4 Float64 10 Unrolled by 4 util_random.f90:3
% [loop in experiment1 at ppmd01.f90:117] [m] 0.153s1 0.153s1 Vectorized (Body) Avx [EST%_]389x 4 Divisions; Inserts Float64 10 ppmdo1.f90:117
1 [loop in fill_uniform_real at util_random.fo... [] @1 Serialized user function call(s) present 0.152s1 0.152s1 Vectorized (Body) AVX [FD00%]4.89x 4 Extracts Float64 2 util_random.f90:1
[loop in experiment1 at ppmdo1.f. (m] 0.100s| 0.100s(Vectorized (B... AVX [97% __]3.88x 4 Divisions; Inserts Floaté4 10 ppmdo1.f90:1..
% [loop in fill_uniform_real at util_random.f9... [J @1 Serialized user function call(s) present 0.067s(0.067s(Vectorized (Body) Avx [FE00%]s548x 4 Float64 1 util_random.f90:1
= [loop in ppmd01 at ppmd01.f90:99] [m} 0.000s 4.287s I Scalar @ inner loop was alread ... Unpacks Float64 16 ppmdo1.f90:99

96

- Run Intel Advisor again

@ Where should | add vectori:

Function Call Sites and Loops

jiize=dinoparalial INTELADVISORXE 016
Elapsed time: 220.37s [Vectorized] [Not Vectorized| "] FILTER: |All Module_~ ||All Sources _~ [|Loops "~ ||aii Threads |
@ Ssummary %% Survey Report @ Refinement Reports () Annotation Report — o,
‘Vectonzed Loops E‘ Instruction Set Analysis E!‘
Function Call Sites and Loops &~ Vector Issues Self Time Total Time Type Why No Vectorization? - - - - Advanced Location
\vect .. | Efficiency \Gam . \VL . ‘Tralts Data Types | Number of Vector Registers ‘
[+ [loop in experiment1 at ppmd01.f90:134] [m] 4.034sEmE 4.034sEEE Vectorized (Body) AVX [E78% T]3.04x 4 Divisions; Inserts Float64 10 ppmdo1.f90:134
[[loop in fill_uniform_integer at util rando... ~ [] 1 Data type conversions present 0.254s1 0.254s1 Vectorized (Body) Avx [FD00% _]4.96x 4 shifts; Type Conversions Float64; In... 5 util_random.f90:5-
[[loop in fill_uniform_real at util_random.f9... [J @1 Inefficient memory access patterns .. 0.170s| 0.170s1 Vectorized (Body) Avx [FE00%]430x 4 Float64 10 Unrolled by 4 util_random.f90:3
[[loop in fill_uniform_real at util_random.f9... [0.15651 0.156s1 Vectorized (Body) AVX 437x 4 Float64 10 unrolled by 4 util_random.f90:3
[[loop in experiment1 at ppmd01.f90:117] [} 0.153s1 0.153s1 Vectorized (Body) AVX [E97%]389x 4 Divisions; Inserts Float64 10 ppmdo1.f90:117
[[loop in fill_uniform_real at util_random.f9... [] @1 Serialized user function call(s) present 0.152s1 0.152s1 Vectorized (Body) AVX [FD00%]4.89x 4 Extracts Float64 2 util_random.f90:1
i+ [loop in experimentl at ppmdoLl.f... a 0.100s1 0.100s(Vectorized (B... AVX [~97Y _ |3.88x 4 Divisions; Inserts Floaté4 10 ppmdol1.f90:1..
[[loop in fill_uniform_real at util_random.f9... [J @1 Serialized user function call(s) present 0.067s(0.067s(Vectorized (Body) Avx [FE00%]s548x 4 Float64 1 util_random.f90:1
= [loop in ppmd01 at ppmd01.f90:99] [m} 0.000s 4.287s I Scalar @ inner loop was alread ... Unpacks Float64 16 ppmdo1.f90:99
=
. List of hot spots
& v |Vector Issues Self Time Total Time Type Why No Vectorization?

K@ [loop in experimentl at ppmdoOl.f...
% [loop in fill_uniform_integer at util_rando ...
" [loop in experimentl at ppmd01.f30:117]
" [loop in experimentl at ppmd01.f90:100]

315 [loop in ppmd01 at ppmd01.f90:99]

5 [loop in fill_uniform_real at util_random.f9...
% [loop in fill_uniform_real at util_random.f9....

% [loop in fill_uniform_real at util_random.f9 ...

% [loop in fill_uniform_real at util_random.f9...

¢ 1 Data type conversions present

@ 1 Serialized user function call(s) present

@ 1 Serialized user function call(s) present

OOooOoooOooOoogl

¢ 1 Inefficient memory access patterns ..

4.034s_1| 4.034s[_]

0.254s1
0.170s1
0.156s1
0.153s1
0.152s1
0.100s1
0.067s(
0.000s(

Vectorized (B...

0.254s1 Vectorized (Body)
0.170s1 Vectorized (Body)
0.156s1 Vectorized (Body)
0.153s1 Vectorized (Body)
0.152s1 Vectorized (Body)
0.100s(Vectorized (Body)
0.067s(Vectorized (Body)

4.287s mmmm Scalar

@ inner loop was alread ...

97

- Run Intel Advisor again

@ Where should | add vectorizati d/or threading paralleli .
Elapsed time: 220.37s [Vectorized] [Not Vectorized| "] FILTER: |All Module_~ ||All Sources _~ [|Loops "~ [lan Threads |

@ summary %% survey Report ¥ Refinement Reports (3 Annotation Report —

‘Vectonzed Loops E‘ Instruction Set Analysis E!‘ B
Function Call Sites and Loops &~ | Vector Issues Self Time Total Time Type Why No Vectorization? " " " " Advanced Location

\vect .. | Efficiency \Gam . \VL . }Trauts Data Types | Number of Vector Reglsters‘
[+ [loop in experiment1 at ppmd01.f90:134] [m] 4.034smmm 4.034smmm Vectorized (Body) AVX [E78% T]3.04x 4 Divisions; Inserts Float64 10 ppmdo1.f90:134
" [loop in fill_uniform_integer at util_rando... ~ [] @1 Data type conversions present 0.254s1 0.254s1 Vectorized (Body) AVX 4 shifts; Type Conversions Float6d; In... 5 util_random.fg0:5:
¢ [loop in fill_uniform_real at util_random.f... [@ 1 Inefficient memory access pattems .. 0.170s1 0170s1 Vectorized (Body) AVX 4 Floatsd 10 Unrolled by 4 util_random.f90:3
[loop in fill_uniform_real at util_random.f3... [0.156s1 0.156s1 Vectorized (Body) AVX 4 Float64 10 Unrolled by 4 util_random.f90:3
[loop in experiment1 at ppmd01.f90:117] [m} 0.153s1 0.153s1 Vectorized (Body) AVX 4 Divisions; Inserts Float64 10 ppmd01.f30:117
[+ [loop in fill_uniform_real at util_random.f9... [@1 Serialized user function call(s) present 0.152s1 0.152s1 Vectorized (Body) AVX 4 Extracts Float64 2 util_random.f90:1.
i+ [loop in experimentl at ppmdoLl.f... a 0.100s1 0.100s(Vectorized (B... AVX 4 Divisions; Inserts Floaté4 10 ppmdol1.f90:1..
[[loop in fill_uniform_real at util_random.fo... [] @1 Serialized user function call(s) present 0.067s(0.067st Vectorized (Body) AVX 4 Float64 1 util_random.f90:1
= [loop in ppmd01 at ppmd01.f90:99] [m} 0.000s 4.287s I Scalar @ inner loop was alread ... Unpacks Float64 16 ppmdo1.f90:99

[
Function Call Sites and Loops & v |Vector Issues Self Time Total Time Type Why No Vectorization?

4.034s[1| 4.034s[_]|Vectorized (B...

" [loop in experimentl at ppmd01.f90:117] O 0.153s1 0.153s1 Vectorized (Body)

" [loop in experimentl at ppmd01.f90:100] O 0.100s1 0.100s(Vectorized (Body)

315 [loop in ppmd01 at ppmd01.f90:99] O 0.000s(4.287s mmm Scalar @ inner loop was alread ...

98

- Run Intel Advisor again

@ Where should | add vectorizati d/or threading paralleli .
Elapsed time: 220.37s [Vectorized] [Not Vectorized| "] FILTER: |All Module_~ ||All Sources _~ [|Loops "~ ||aii Threads |

@ summary %% survey Report ¥ Refinement Reports (3 Annotation Report —

‘Vectonzed Loops E‘ Instruction Set Analysis E!‘ B
Function Call Sites and Loops &~ Vector Issues Self Time Total Time Type Why No Vectorization? - - - - Advanced Location

\vect .. | Efficiency \Gam . \VL . }Trauts Data Types | Number of Vector Reglsters‘
[+ [loop in experiment1 at ppmd01.f90:134] [m] 4.034sEmE 4.034sEEE Vectorized (Body) AVX [E78% T]3.04x 4 Divisions; Inserts Float64 10 ppmdo1.f90:134
" [loop in fill_uniform_integer at util_rando... ~ [] @1 Data type conversions present 0.254s1 0.254s1 Vectorized (Body) AVX 4 shifts; Type Conversions Float6d; In... 5 util_random.fg0:5:
" [loop in fill_uniform_real at util_random.f9... [] ¢ 1 Inefficient memory access pattems .. 0.170sl 0170s1 Vectorized (Body) AVX 4 Floated 10 Unrolled by 4 util_random.f90:3
[loop in fill_uniform_real at util_random.f9... [0.156s1 0.156s1 Vectorized (Body) AVX 4 Float64 10 Unrolled by 4 util_random.f90:3
[loop in experiment1 at ppmd01.f90:117] [m} 0.153s1 0.153s1 Vectorized (Body) AVX 4 Divisions; Inserts Float64 10 ppmd01.f30:117
[+ [loop in fill_uniform_real at util_random.f9... [@1 Serialized user function call(s) present 0.152s1 0.152s1 Vectorized (Body) AVX 4 Extracts Float64 2 util_random.f90:1.
i+ [loop in experimentl at ppmdoLl.f... a 0.100s1 0.100s(Vectorized (B... AVX 4 Divisions; Inserts Floaté4 10 ppmdol1.f90:1..
[[loop in fill_uniform_real at util_random.fo... [] @1 Serialized user function call(s) present 0.067s(0.067st Vectorized (Body) AVX 4 Float64 1 util_random.f90:1
= [loop in ppmd01 at ppmd01.f90:99] [m} 0.000s 4.287s I Scalar @ inner loop was alread ... Unpacks Float64 16 ppmdo1.f90:99

[
Random access
Function Call Sites and Loops &~ |Vector _sues Self Time Total Time Type Why No Vectorization?

K@ [loop in experimentl at ppmdoOl.f... 4.034s[—1| 4.034s[—]|Vectorized (B...

" [loop in experimentl at ppmd01.f90:117] O 0.153s1 0.153s1 Vectorized (Body)

" [loop in experimentl at ppmd01.f90:100] O 0.100s1 0.100s(Vectorized (Body)

315 [loop in ppmd01 at ppmd01.f90:99] O 0.000s(4.287s mmm Scalar @ inner loop was alread ...

99

- Run Intel Advisor again

@ Where should | add vectorizati d/or threading paralleli .
Elapsed time: 220.37s [Vectorized] [Not Vectorized| "] FILTER: |All Module_~ ||All Sources _~ [|Loops "~ ||aii Threads |

@ summary %% survey Report ¥ Refinement Reports (3 Annotation Report —

‘Vectonzed Loops E‘ Instruction Set Analysis E!‘ B
Function Call Sites and Loops &~ Vector Issues Self Time Total Time Type Why No Vectorization? - - - - Advanced Location

\vect .. | Efficiency \Gam . \VL . }Trauts Data Types | Number of Vector Reglsters‘
[+ [loop in experiment1 at ppmd01.f90:134] [m] 4.034sEmE 4.034sEEE Vectorized (Body) AVX [E78% T]3.04x 4 Divisions; Inserts Float64 10 ppmdo1.f90:134
" [loop in fill_uniform_integer at util_rando... ~ [] @1 Data type conversions present 0.254s1 0.254s1 Vectorized (Body) AVX 4 shifts; Type Conversions Float6d; In... 5 util_random.fg0:5:
" [loop in fill_uniform_real at util_random.f9... [] ¢ 1 Inefficient memory access pattems .. 0.170sl 0170s1 Vectorized (Body) AVX 4 Floated 10 Unrolled by 4 util_random.f90:3
[loop in fill_uniform_real at util_random.f9... [0.156s1 0.156s1 Vectorized (Body) AVX 4 Float64 10 Unrolled by 4 util_random.f90:3
[loop in experiment1 at ppmd01.f90:117] [m} 0.153s1 0.153s1 Vectorized (Body) AVX 4 Divisions; Inserts Float64 10 ppmd01.f30:117
[+ [loop in fill_uniform_real at util_random.f9... [@1 Serialized user function call(s) present 0.152s1 0.152s1 Vectorized (Body) AVX 4 Extracts Float64 2 util_random.f90:1.
i+ [loop in experimentl at ppmdoLl.f... a 0.100s1 0.100s(Vectorized (B... AVX 4 Divisions; Inserts Floaté4 10 ppmdol1.f90:1..
[[loop in fill_uniform_real at util_random.fo... [] @1 Serialized user function call(s) present 0.067s(0.067st Vectorized (Body) AVX 4 Float64 1 util_random.f90:1
= [loop in ppmd01 at ppmd01.f90:99] [m} 0.000s 4.287s I Scalar @ inner loop was alread ... Unpacks Float64 16 ppmdo1.f90:99

[
Random access
Function Call Sites and Loops &~ |Vector _sues Self Time Total Time Type Why No Vectorization?

K@ [loop in experimentl at ppmdoOl.f... 4.034s[—1|Vectorized (B...

" [loop in experimentl at ppmd01.f90:117] O 0.153s1 0.153s1 Vectorized (Body)

" [loop in experimentl at ppmd01.f90:100] O 0.100s1 0.100s(Vectorized (Body)

315 [loop in ppmd01 at ppmd01.f90:99] O 0.000s(4.287s mmm Scalar @ inner loop was alread ...

100

- Run Intel Advisor again

@ Where should | add vectorizati d/or threading paralleli .
Elapsed time: 220.37s [Vectorized] [Not Vectorized| "] FILTER: |All Module_~ ||All Sources _~ [|Loops "~ ||aii Threads |

@ summary %% survey Report ¥ Refinement Reports (3 Annotation Report —

‘Vectonzed Loops E‘ Instruction Set Analysis E!‘ B
Function Call Sites and Loops &~ Vector Issues Self Time Total Time Type Why No Vectorization? - - - - Advanced Location

\vect .. | Efficiency \Gam . \VL . }Trauts Data Types | Number of Vector Reglsters‘
[+ [loop in experiment1 at ppmd01.f90:134] [m] 4.034sEmE 4.034sEEE Vectorized (Body) AVX [E78% T]3.04x 4 Divisions; Inserts Float64 10 ppmdo1.f90:134
" [loop in fill_uniform_integer at util_rando... ~ [] @1 Data type conversions present 0.254s1 0.254s1 Vectorized (Body) AVX 4 shifts; Type Conversions Float6d; In... 5 util_random.fg0:5:
" [loop in fill_uniform_real at util_random.f9... [] ¢ 1 Inefficient memory access pattems .. 0.170sl 0170s1 Vectorized (Body) AVX 4 Floated 10 Unrolled by 4 util_random.f90:3
[loop in fill_uniform_real at util_random.f9... [0.156s1 0.156s1 Vectorized (Body) AVX 4 Float64 10 Unrolled by 4 util_random.f90:3
[loop in experiment1 at ppmd01.f90:117] [m} 0.153s1 0.153s1 Vectorized (Body) AVX 4 Divisions; Inserts Float64 10 ppmd01.f30:117
[+ [loop in fill_uniform_real at util_random.f9... [@1 Serialized user function call(s) present 0.152s1 0.152s1 Vectorized (Body) AVX 4 Extracts Float64 2 util_random.f90:1.
i+ [loop in experimentl at ppmdoLl.f... a 0.100s1 0.100s(Vectorized (B... AVX 4 Divisions; Inserts Floaté4 10 ppmdol1.f90:1..
[[loop in fill_uniform_real at util_random.fo... [] @1 Serialized user function call(s) present 0.067s(0.067st Vectorized (Body) AVX 4 Float64 1 util_random.f90:1
= [loop in ppmd01 at ppmd01.f90:99] [m} 0.000s 4.287s I Scalar @ inner loop was alread ... Unpacks Float64 16 ppmdo1.f90:99

[
Random access
Function Call Sites and Loops &~ |Vector _sues Self Time Total Time Type Why No Vectorization?

K@ [loop in experimentl at ppmdoOl.f... 4.034s[—1| 4.034s[—]|Vectorized (B...

" [loop in experimentl at ppmd01.f90:117] O 0.153s1 0.153s1 Vectorized (Body)

" [loop in experimentl at ppmd01.f90:100] O 0.100s1 0.100s(Vectorized (Body)

315 [loop in ppmd01 at ppmd01.f90:99] O 0.000s(4.287s mmm Scalar @ inner loop was alread ...

101

- Run Intel Advisor again

& Where should | add vectorizati d/or threading paralleli: . INTEL'ADVISORXE 2016
lapsed time: 220.37s [Vectorized] [0 NotVectorized| "] FILTER: |All Module_~ |]All Sources _~ ||Loops "~ ||aii Threads |

@ Ssummary %% Survey Report @ Refinement Reports () Annotation Report — P,

‘Vectonzed Loops E‘ Instruction Set Analysis E!‘ B
Function Call Sites and Loops &~ Vector Issues Self Time Total Time Type Why No Vectorization? - - - - Advanced Location

\vect .. | Efficiency \Gam . \VL . }Trauts Data Types | Number of Vector Reglsters‘
[+ [loop in experiment1 at ppmd01.f90:134] [m] 4.034sEmE 4.034sEEE Vectorized (Body) AVX [E78% T]3.04x 4 Divisions; Inserts Float64 10 ppmdo1.f90:134
[[loop in fill_uniform_integer at util rando... ~ [] 1 Data type conversions present 0.254s1 0.254s1 Vectorized (Body) Avx [FD00% _]4.96x 4 shifts; Type Conversions Float64; In... 5 util_random.f90:5-
[[loop in fill_uniform_real at util_random.f9... [J @1 Inefficient memory access patterns .. 0.170s| 0.170s1 Vectorized (Body) Avx [FE00%]430x 4 Float64 10 Unrolled by 4 util_random.f90:3
) [loop in fill_uniform_real at util_random.fo... [0.15651 0.15651 Vectorized (Body) AVX 437x 4 Float64 10 Unrolled by 4 util_random.f90:3
[[loop in experiment1 at ppmd01.f90:117] [} 0.153s1 0.153s1 Vectorized (Body) AVX [E97%]389x 4 Divisions; Inserts Float64 10 ppmdo1.f90:117
[[loop in fill_uniform_real at util_random.f9... [] @1 Serialized user function call(s) present 0.152s1 0.152s1 Vectorized (Body) AVX [FD00%]4.89x 4 Extracts Float64 2 util_random.f90:1
i+ [loop in experimentl at ppmdoLl.f... a 0.100s1 0.100s(Vectorized (B... AVX [~97Y _|3.88x 4 Divisions; Inserts Floaté4 10 ppmdol1.f90:1..
[[loop in fill_uniform_real at util_random.f9... [J @1 Serialized user function call(s) present 0.067s(0.067s(Vectorized (Body) Avx [FE00%]s548x 4 Float64 1 util_random.f90:1
= [loop in ppmd01 at ppmd01.f90:99] [m} 0.000s 4.287s I Scalar @ inner loop was alread ... Unpacks Float64 16 ppmdo1.f90:99

Random access

. List of hot spots

Function Call Sites and Loops &~ |Vector _sues

K@ [loop in experimentl at ppmdoOl.f... [] |

" [loop in experimentl at ppmd01.f30:117] O

" [loop in experimentl at ppmd01.f30:100] O

315 [loop in ppmd01 at ppmd01.f90:99] O

Contiguous-AoS

Self Time Total Time Type Why No Vectorization?

4.034s[1| 4.034s[_]|Vectorized (B...

0.153s1 0.153s1 Vectorized (Body)

0.100s1 0.100s(Vectorized (Body)

0.000s(4.287s @ Scalar @ inner loop was alread ...

102

- Run Intel Advisor again

& Where should | add vectorizati d/or threading paralleli: INTEL'ADVISORXE 2016
lapsed time: 220.37s [Vectorized] [0 NotVectorized| "] FILTER: |All Module_~ |]All Sources _~ ||Loops "~ ||aii Threads |

@ Ssummary %% Survey Report @ Refinement Reports () Annotation Report — o,

‘Vectonzed Loops E‘ Instruction Set Analysis E!‘ B
Function Call Sites and Loops &~ Vector Issues Self Time Total Time Type Why No Vectorization? - - - - Advanced Location

\vect .. | Efficiency \Gam . \VL . ‘Tralts Data Types | Number of Vector Registers ‘
[+ [loop in experiment1 at ppmd01.f90:134] [m] 4.034sEmE 4.034sEEE Vectorized (Body) AVX [E78% T]3.04x 4 Divisions; Inserts Float64 10 ppmdo1.f90:134
[[loop in fill_uniform_integer at util rando... ~ [] 1 Data type conversions present 0.254s1 0.254s1 Vectorized (Body) Avx [FD00% _]4.96x 4 shifts; Type Conversions Float64; In... 5 util_random.f90:5-
[[loop in fill_uniform_real at util_random.f9... [J @1 Inefficient memory access patterns .. 0.170s| 0.170s1 Vectorized (Body) Avx [FE00%]430x 4 Float64 10 Unrolled by 4 util_random.f90:3
[[loop in fill_uniform_real at util_random.f9... [0.15651 0.156s1 Vectorized (Body) AVX 437x 4 Float64 10 unrolled by 4 util_random.f90:3
[[loop in experiment1 at ppmd01.f90:117] [} 0.153s1 0.153s1 Vectorized (Body) AVX [E97%]389x 4 Divisions; Inserts Float64 10 ppmdo1.f90:117
[[loop in fill_uniform_real at util_random.f9... [] @1 Serialized user function call(s) present 0.152s1 0.152s1 Vectorized (Body) AVX [FD00%]4.89x 4 Extracts Float64 2 util_random.f90:1
i+ [loop in experimentl at ppmdoLl.f... a 0.100s1 0.100s(Vectorized (B... AVX [~97Y _ |3.88x 4 Divisions; Inserts Floaté4 10 ppmdol1.f90:1..
[[loop in fill_uniform_real at util_random.f9... [J @1 Serialized user function call(s) present 0.067s(0.067s(Vectorized (Body) Avx [FE00%]s548x 4 Float64 1 util_random.f90:1
= [loop in ppmd01 at ppmd01.f90:99] [m} 0.000s 4.287s I Scalar @ inner loop was alread ... Unpacks Float64 16 ppmdo1.f90:99

. List of hot spots | Tendomeaceess || Configuous-Aos |1 Configuous-SoR

Function Call Sites and Loops &~ |Vector _sues Self Time T _1ime

Why No Vectorization?

K@ [loop in experimentl at ppmdoOl.f... [] | : *S[_1| 4.034s[—|Vectorized (B...

" [loop in experimentl at ppmd01.f90:117] O 0.153s1 0.153s1 Vectorized (Body)

" [loop in experimentl at ppmd01.f90:100] O 0.100s1 0.100s(Vectorized (Body)

315 [loop in ppmd01 at ppmd01.f90:99] O 0.000s(4.287s mmm Scalar @ inner loop was alread ...

103

- Run Intel Advisor again

& Where should | add vectorizati d/or threading paralleli: INTEL'ADVISORXE 2016
lapsed time: 220.37s [Vectorized] [0 NotVectorized| "] FILTER: |All Module_~ |]All Sources _~ ||Loops "~ ||aii Threads |

@ Ssummary %% Survey Report @ Refinement Reports () Annotation Report — o,

‘Vectonzed Loops E‘ Instruction Set Analysis E!‘
Function Call Sites and Loops &~ Vector Issues Self Time Total Time Type Why No Vectorization? - - - - Advanced Location

\vect .. | Efficiency \Gam . \VL . ‘Tralts Data Types | Number of Vector Registers ‘
[+ [loop in experiment1 at ppmd01.f90:134] [m] 4.034sEmE 4.034sEEE Vectorized (Body) AVX [E78% T]3.04x 4 Divisions; Inserts Float64 10 ppmdo1.f90:134
[[loop in fill_uniform_integer at util rando... ~ [] 1 Data type conversions present 0.254s1 0.254s1 Vectorized (Body) Avx [FD00% _]4.96x 4 shifts; Type Conversions Float64; In... 5 util_random.f90:5-
[[loop in fill_uniform_real at util_random.f9... [J @1 Inefficient memory access patterns .. 0.170s| 0.170s1 Vectorized (Body) Avx [FE00%]430x 4 Float64 10 Unrolled by 4 util_random.f90:3
[[loop in fill_uniform_real at util_random.f9... [0.15651 0.156s1 Vectorized (Body) AVX 437x 4 Float64 10 unrolled by 4 util_random.f90:3
[[loop in experiment1 at ppmd01.f90:117] [} 0.153s1 0.153s1 Vectorized (Body) AVX [E97%]389x 4 Divisions; Inserts Float64 10 ppmdo1.f90:117
[[loop in fill_uniform_real at util_random.f9... [] @1 Serialized user function call(s) present 0.152s1 0.152s1 Vectorized (Body) AVX [FD00%]4.89x 4 Extracts Float64 2 util_random.f90:1
i+ [loop in experimentl at ppmdoLl.f... a 0.100s1 0.100s(Vectorized (B... AVX [~97Y _ |3.88x 4 Divisions; Inserts Floaté4 10 ppmdol1.f90:1..
[[loop in fill_uniform_real at util_random.f9... [J @1 Serialized user function call(s) present 0.067s(0.067s(Vectorized (Body) Avx [FE00%]s548x 4 Float64 1 util_random.f90:1
= [loop in ppmd01 at ppmd01.f90:99] [m} 0.000s 4.287s I Scalar @ inner loop was alread ... Unpacks Float64 16 ppmdo1.f90:99

Random access

. List of hot spots

Function Call Sites and Loops

K@ [loop in experimentl at ppmdoOl.f...

" [loop in experimentl at ppmd01.f30:117]

" [loop in experimentl at ppmd01.f90:100] O

315 [loop in ppmd01 at ppmd01.f90:99] O

Contiguous-AoS

Self Time

0.153s1

0.100s1

0.000s(

®SC—1| 4.034s—]|Vectorized (B...

Contiguous-So

_~1ime Type

0.153s1 Vectorized (Body)

\ Vectorized (Body)/

4.287s mmmm Scalar

0.100s(

A

Why No Vectorization?

@ inner loop was alread ...

104

- Run Intel Advisor again

& Where should | add vectorizati d/or threading paralleli: INTEL'ADVISORXE 2016
lapsed time: 220.37s [Vectorized] [0 NotVectorized| "] FILTER: |All Module_~ |]All Sources _~ ||Loops "~ ||aii Threads |

@ Ssummary %% Survey Report @ Refinement Reports () Annotation Report — o,

‘Vectonzed Loops E‘ Instruction Set Analysis E!‘ B
Function Call Sites and Loops &~ Vector Issues Self Time Total Time Type Why No Vectorization? - - - - Advanced Location

\vect .. | Efficiency \Gam . \VL . ‘Tralts Data Types | Number of Vector Registers ‘
[+ [loop in experiment1 at ppmd01.f90:134] [m] 4.034sEmE 4.034sEEE Vectorized (Body) AVX [E78% T]3.04x 4 Divisions; Inserts Float64 10 ppmdo1.f90:134
[[loop in fill_uniform_integer at util rando... ~ [] 1 Data type conversions present 0.254s1 0.254s1 Vectorized (Body) Avx [FD00% _]4.96x 4 shifts; Type Conversions Float64; In... 5 util_random.f90:5-
[[loop in fill_uniform_real at util_random.f9... [J @1 Inefficient memory access patterns .. 0.170s| 0.170s1 Vectorized (Body) Avx [FE00%]430x 4 Float64 10 Unrolled by 4 util_random.f90:3
[[loop in fill_uniform_real at util_random.f9... [0.15651 0.156s1 Vectorized (Body) AVX 437x 4 Float64 10 unrolled by 4 util_random.f90:3
[[loop in experiment1 at ppmd01.f90:117] [} 0.153s1 0.153s1 Vectorized (Body) AVX [E97%]389x 4 Divisions; Inserts Float64 10 ppmdo1.f90:117
[[loop in fill_uniform_real at util_random.f9... [] @1 Serialized user function call(s) present 0.152s1 0.152s1 Vectorized (Body) AVX [FD00%]4.89x 4 Extracts Float64 2 util_random.f90:1
i+ [loop in experimentl at ppmdoLl.f... a 0.100s1 0.100s(Vectorized (B... AVX [~97Y _ |3.88x 4 Divisions; Inserts Floaté4 10 ppmdol1.f90:1..
[[loop in fill_uniform_real at util_random.f9... [J @1 Serialized user function call(s) present 0.067s(0.067s(Vectorized (Body) Avx [FE00%]s548x 4 Float64 1 util_random.f90:1
= [loop in ppmd01 at ppmd01.f90:99] [m} 0.000s 4.287s I Scalar @ inner loop was alread ... Unpacks Float64 16 ppmdo1.f90:99

. List of hot spots | Tendomeaceess || Configuous-Aos |1 Configuous-SoR

Function Call Sites and Loops &~ |Vector _sues Self Time T _1ime

Why No Vectorization?

K@ [loop in experimentl at ppmdoOl.f... [] | : *S[_1| 4.034s[—|Vectorized (B...

" [loop in experimentl at ppmd01.f90:117] O 0.153s1 0.153s1 Vectorized (Body)

" [loop in experimentl at ppmd01.f90:100] O 0.100s1 0.100s(Vectorized (Body)

315 [loop in ppmd01 at ppmd01.f90:99] O 0.000s(4.287s mmm Scalar @ inner loop was alread ...

105

- Run Intel Advisor again

& Where should | add vectorizati d/or threading paralleli: INTEL'ADVISORXE 2016
Elapsed time: 220.37s [Vectorized] [Not Vectorized| "] FILTER: |All Module_~ ||All Sources _~ [|Loops "~ ||aii Threads |

@ Ssummary %% Survey Report @ Refinement Reports () Annotation Report — o,

‘Vectonzed Loops E‘ Instruction Set Analysis E!‘
Function Call Sites and Loops &~ Vector Issues Self Time Total Time Type Why No Vectorization? - - - - Advanced Location

\vect .. | Efficiency \Gam . \VL . ‘Tralts Data Types | Number of Vector Registers ‘
[+ [loop in experiment1 at ppmd01.f90:134] [m] 4.034sEmE 4.034sEEE Vectorized (Body) AVX [E78% T]3.04x 4 Divisions; Inserts Float64 10 ppmdo1.f90:134
[[loop in fill_uniform_integer at util rando... ~ [] 1 Data type conversions present 0.254s1 0.254s1 Vectorized (Body) Avx [FD00% _]4.96x 4 shifts; Type Conversions Float64; In... 5 util_random.f90:5-
[[loop in fill_uniform_real at util_random.f9... [J @1 Inefficient memory access patterns .. 0.170s| 0.170s1 Vectorized (Body) Avx [FE00%]430x 4 Float64 10 Unrolled by 4 util_random.f90:3
[[loop in fill_uniform_real at util_random.f9... [0.15651 0.156s1 Vectorized (Body) AVX 437x 4 Float64 10 unrolled by 4 util_random.f90:3
[[loop in experiment1 at ppmd01.f90:117] [} 0.153s1 0.153s1 Vectorized (Body) AVX [E97%]389x 4 Divisions; Inserts Float64 10 ppmdo1.f90:117
[[loop in fill_uniform_real at util_random.f9... [] @1 Serialized user function call(s) present 0.152s1 0.152s1 Vectorized (Body) AVX [FD00%]4.89x 4 Extracts Float64 2 util_random.f90:1
i+ [loop in experimentl at ppmdoLl.f... a 0.100s1 0.100s(Vectorized (B... AVX [~97Y _ |3.88x 4 Divisions; Inserts Floaté4 10 ppmdol1.f90:1..
[[loop in fill_uniform_real at util_random.f9... [J @1 Serialized user function call(s) present 0.067s(0.067s(Vectorized (Body) Avx [FE00%]s548x 4 Float64 1 util_random.f90:1
= [loop in ppmd01 at ppmd01.f90:99] [m} 0.000s 4.287s I Scalar @ inner loop was alread ... Unpacks Float64 16 ppmdo1.f90:99

Random access

. List of hot spots

Function Call Sites and Loops Self Time

K@ [loop in experimentl at ppmdoOl.f...

" [loop in experimentl at ppmd01.f30:117] 0.153s1

" [loop in experimentl at ppmd01.f90:100]

O 0.100s1

315 [loop in ppmd01 at ppmd01.f90:99]

O 0.000s(

Contiguous-AoS

%S| 4.034s[—1|Vectorized (B...

Contiguous-SoA

1ime Why No Vectorization?

0.153s1 Vectorized (Body)

0.100s(Vectorized (Body)

4.287s mmmm Scalar

@ inner loop was alread ...

Loop over m

106

" [loop in experimentl at ppmd01.f30:100] AVX

- Run Intel Advisor again

& Where should | add vectorizati d/or threading paralleli: . INTELADVISORXE2016
Elapsed time: 220.37s [Vectorized] [Not Vectorized| "] FILTER: |All Module_~ ||All Sources _~ [|Loops "~ ||aii Threads |
Summai Survey Report Refinement Reports Annotation Report
P Iy %G survey Report Rep: b Rep! —— -
‘Vectonzed Loops E‘ Instruction Set Analysis E!‘ B
Function Call Sites and Loops &~ Vector Issues Self Time Total Time Type Why No Vectorization? - - - - Advanced Location
|vect... |Efficiency [Gain ... VL .. Traits Data Types | Number of Vector Registers |
[+ [loop in experiment1 at ppmd01.f90:134] [m] 4.034smmm 4.034smmm Vectorized (Body) AVX [E78% T]3.04x 4 Divisions; Inserts Float64 10 ppmdo1.f90:134
[[loop in fill_uniform_integer at util rando... ~ [] 1 Data type conversions present 0.254s1 0.254s1 Vectorized (Body) Avx [FD00% _]4.96x 4 shifts; Type Conversions Float64; In... 5 util_random.f90:5-
[[loop in fill_uniform_real at util_random.fé... [] ¢ 1 Inefficient memory access pattems .. 0.170sl 01701 Vectorized (Body) Avx [FE00%]430x 4 Float64 10 unrolled by 4 util_random.f90:3
) [loop in fill_uniform_real at util_random.fo... [0.15651 0.15651 Vectorized (Body) Avx [FEO0% T]437x 4 Float64 10 Unrolled by 4 util_random.f90:3
[loop in experiment1 at ppmd01.f90:117] [m} 0.153s1 0.153s1 Vectorized (Body) AVX _|389x 4 Divisions; Inserts Float64 10 ppmd01.f30:117
[[loop in fill_uniform_real at util_random.f9... [] @1 Serialized user function call(s) present 0.152s1 0.152s1 Vectorized (Body) AVX [FD00%]4.89x 4 Extracts Float64 2 util_random.f90:1
i+ [loop in experimentl at ppmdoLl.f... a 0.100s1 0.100s(Vectorized (B... AVX [~97Y _|3.88x 4 Divisions; Inserts Floaté4 10 ppmdol1.f90:1..
[[loop in fill_uniform_real at util_random.f9... [J @1 Serialized user function call(s) present 0.067s(0.067s(Vectorized (Body) Avx [FE00%]s548x 4 Float64 1 util_random.f90:1
= [loop in ppmd01 at ppmd01.f90:99] [m} 0.000s 4.287s I Scalar @ inner loop was alread ... Unpacks Float64 16 ppmdo1.f90:99
[
‘Vectonzed Loops Instruction Set Analysis
Function Call Sites and Loops Advanced

Vect... | Efficiency Gain ... | VL ..| Traits Data Types | Number of Vector Registers

K@ [loop in experimentl at ppmdoOLl.f... |[AVX _ Divisions; Inserts Float64 \10

" [loop in experimentl at ppmd01.f90:117] AvX [F97%]3.89x 4 Divisions; Inserts Float64 10

4 Divisions; Inserts Float64 10

55 [loop in ppmd01 at ppmd01.f90:99] Unpacks Float64 16

107

PF

PF

PE

- Run Intel Advisor again

@ Where should | add vectorizati d/or threading paralleli .
Elapsed time: 220.37s [Vectorized] [Not Vectorized| "] FILTER: |All Module_~ ||All Sources _~ [|Loops "~ [lan Threads |

@ summary %% survey Report ¥ Refinement Reports (3 Annotation Report —

‘Vectonzed Loops E‘ Instruction Set Analysis E!‘ B
Function Call Sites and Loops &~ | Vector Issues Self Time Total Time Type Why No Vectorization? " " " " Advanced Location

\vect .. | Efficiency \Gam . \VL . }Trauts Data Types | Number of Vector Reglsters‘
[+ [loop in experiment1 at ppmd01.f90:134] [m] 4.034smmm 4.034smmm Vectorized (Body) AVX [E78% T]3.04x 4 Divisions; Inserts Float64 10 ppmdo1.f90:134
" [loop in fill_uniform_integer at util_rando... ~ [] @1 Data type conversions present 0.254s1 0.254s1 Vectorized (Body) AVX 4 shifts; Type Conversions Float6d; In... 5 util_random.fg0:5:
¢ [loop in fill_uniform_real at util_random.f... [@ 1 Inefficient memory access pattems .. 0.170s1 0170s1 Vectorized (Body) AVX 4 Floatsd 10 Unrolled by 4 util_random.f90:3
[loop in fill_uniform_real at util_random.f3... [0.156s1 0.156s1 Vectorized (Body) AVX 4 Float64 10 Unrolled by 4 util_random.f90:3
[loop in experiment1 at ppmd01.f90:117] [m} 0.153s1 0.153s1 Vectorized (Body) AVX 4 Divisions; Inserts Float64 10 ppmd01.f30:117
[+ [loop in fill_uniform_real at util_random.f9... [@1 Serialized user function call(s) present 0.152s1 0.152s1 Vectorized (Body) AVX 4 Extracts Float64 2 util_random.f90:1.
i+ [loop in experimentl at ppmdoLl.f... a 0.100s1 0.100s(Vectorized (B... AVX 4 Divisions; Inserts Floaté4 10 ppmdol1.f90:1..
[[loop in fill_uniform_real at util_random.fo... [] @1 Serialized user function call(s) present 0.067s(0.067st Vectorized (Body) AVX 4 Float64 1 util_random.f90:1
= [loop in ppmd01 at ppmd01.f90:99] [m} 0.000s 4.287s I Scalar @ inner loop was alread ... Unpacks Float64 16 ppmdo1.f90:99

[
Function Call Sites and Loops & v |Vector Issues Self Time Total Time Type Why No Vectorization?

4.034s[1| 4.034s[_]|Vectorized (B...

" [loop in experimentl at ppmd01.f90:117] O 0.153s1 0.153s1 Vectorized (Body)

" [loop in experimentl at ppmd01.f90:100] O 0.100s1 0.100s(Vectorized (Body)

315 [loop in ppmd01 at ppmd01.f90:99] O 0.000s(4.287s mmm Scalar @ inner loop was alread ...

108

- Run Intel Advisor again

@ Where should | add vectorizati d/or threading paralleli .
Elapsed time: 220.37s [Vectorized] [Not Vectorized| "] FILTER: |All Module_~ ||All Sources _~ [|Loops "~ [lan Threads |

@ summary %% survey Report ¥ Refinement Reports (3 Annotation Report —

‘Vectonzed Loops E‘ Instruction Set Analysis E!‘
Function Call Sites and Loops &~ | Vector Issues Self Time Total Time Type Why No Vectorization? " " " " Advanced Location

\vect .. | Efficiency \Gam . \VL . }Trauts Data Types | Number of Vector Reglsters‘
[loop in experiment1 at ppmd01.f90:134] |m} 4.034s 4.034s mmm Vectorized (Body) AVX 4 Divisions; Inserts Float64 ppmd01.f90:134
" [loop in fill_uniform_integer at util_rando... ~ [] @1 Data type conversions present 0.254s1 0.254s1 Vectorized (Body) AVX 4 shifts; Type Conversions Float6d; In... 5 util_random.fg0:5:
" [loop in fill_uniform_real at util_random.f9... [] ¢ 1 Inefficient memory access pattems .. 0.170sl 0170s1 Vectorized (Body) AVX 4 Floated 10 Unrolled by 4 util_random.f90:3
[loop in fill_uniform_real at util_random.f9... [0.156s1 0.156s1 Vectorized (Body) AVX 4 Float64 10 Unrolled by 4 util_random.f90:3
[loop in experiment1 at ppmd01.f90:117] [m} 0.153s1 0.153s1 Vectorized (Body) AVX 4 Divisions; Inserts Float64 10 ppmd01.f30:117
[+ [loop in fill_uniform_real at util_random.f9... [@1 Serialized user function call(s) present 0.152s1 0.152s1 Vectorized (Body) AVX 4 Extracts Float64 2 util_random.f90:1.
i+ [loop in experimentl at ppmdoLl.f... a 0.100s1 0.100s(Vectorized (B... AVX 4 Divisions; Inserts Floaté4 10 ppmdol1.f90:1..
[[loop in fill_uniform_real at util_random.fo... [] @1 Serialized user function call(s) present 0.067s(0.067st Vectorized (Body) AVX 4 Float64 1 util_random.f90:1
= [loop in ppmd01 at ppmd01.f90:99] [m} 0.000s 4.287s I Scalar @ inner loop was alread ... Unpacks Float64 16 ppmdo1.f90:99

[
Function Call Sites and Loops & v | Vector Issues Self Time Total Time Type Why No Vectorization?

K@ [loop in experimentl at ppmdoOl.f...

4.034s_1| 4.034s[_]

" [loop in experimentl at ppmd01.f30:117] 0.153s1 0.153s1

" [loop in experimentl at ppmd01.f30:100] 0.100s1 0.100s(

315 [loop in ppmd01 at ppmd01.f90:99]

0.000s(4.287s

Vectorized (B...

Vectorized (Body)
Vectorized (Body)

Scalar @ inner loop was alread ...

109

- Run Intel Advisor again

@ Where should | add vectorizati d/or threading paralleli .
Elapsed time: 220.37s [Vectorized] [Not Vectorized| "] FILTER: |All Module_~ ||All Sources _~ [|Loops "~ [lan Threads |

@ summary %% survey Report ¥ Refinement Reports (3 Annotation Report —

‘Vectonzed Loops E‘ Instruction Set Analysis E!‘ B
Function Call Sites and Loops &~ | Vector Issues Self Time Total Time Type Why No Vectorization? " " " " Advanced Location

\vect .. | Efficiency \Gam . \VL . }Trauts Data Types | Number of Vector Reglsters‘
[+ [loop in experiment1 at ppmd01.f90:134] [m] 4.034smmm 4.034smmm Vectorized (Body) AVX [E78% T]3.04x 4 Divisions; Inserts Float64 10 ppmdo1.f90:134
" [loop in fill_uniform_integer at util_rando... ~ [] @1 Data type conversions present 0.254s1 0.254s1 Vectorized (Body) AVX 4 shifts; Type Conversions Float6d; In... 5 util_random.fg0:5:
¢ [loop in fill_uniform_real at util_random.f... [@ 1 Inefficient memory access pattems .. 0.170s1 0170s1 Vectorized (Body) AVX 4 Floatsd 10 Unrolled by 4 util_random.f90:3
[loop in fill_uniform_real at util_random.f3... [0.156s1 0.156s1 Vectorized (Body) AVX 4 Float64 10 Unrolled by 4 util_random.f90:3
[loop in experiment1 at ppmd01.f90:117] [m} 0.153s1 0.153s1 Vectorized (Body) AVX 4 Divisions; Inserts Float64 10 ppmd01.f30:117
[+ [loop in fill_uniform_real at util_random.f9... [@1 Serialized user function call(s) present 0.152s1 0.152s1 Vectorized (Body) AVX 4 Extracts Float64 2 util_random.f90:1.
i+ [loop in experimentl at ppmdoLl.f... a 0.100s1 0.100s(Vectorized (B... AVX 4 Divisions; Inserts Floaté4 10 ppmdol1.f90:1..
[[loop in fill_uniform_real at util_random.fo... [] @1 Serialized user function call(s) present 0.067s(0.067st Vectorized (Body) AVX 4 Float64 1 util_random.f90:1
= [loop in ppmd01 at ppmd01.f90:99] [m} 0.000s 4.287s I Scalar @ inner loop was alread ... Unpacks Float64 16 ppmdo1.f90:99

[
Function Call Sites and Loops & v |Vector Issues Self Time Total Time Type Why No Vectorization?

4.034s[1| 4.034s[_]|Vectorized (B...

" [loop in experimentl at ppmd01.f90:117] O 0.153s1 0.153s1 Vectorized (Body)

" [loop in experimentl at ppmd01.f90:100] O 0.100s1 0.100s(Vectorized (Body)

315 [loop in ppmd01 at ppmd01.f90:99] O 0.000s(4.287s mmm Scalar @ inner loop was alread ...

110

- Run Intel Advisor again

@ Where should | add vectorizati d/or threading paralleli .
Elapsed time: 220.37s [Vectorized] [Not Vectorized| "] FILTER: |All Module_~ ||All Sources _~ [|Loops "~ ||aii Threads |

@ summary %% survey Report ¥ Refinement Reports (3 Annotation Report —

‘Vectonzed Loops E‘ Instruction Set Analysis E!‘ B
Function Call Sites and Loops &~ Vector Issues Self Time Total Time Type Why No Vectorization? - - - - Advanced Location

\vect .. | Efficiency \Gam . \VL . }Trauts Data Types | Number of Vector Reglsters‘
[+ [loop in experiment1 at ppmd01.f90:134] [m] 4.034smmm 4.034smmm Vectorized (Body) AVX [E78% T]3.04x 4 Divisions; Inserts Float64 10 ppmdo1.f90:134
" [loop in fill_uniform_integer at util_rando... ~ [] @1 Data type conversions present 0.254s1 0.254s1 Vectorized (Body) AVX 4 shifts; Type Conversions Float6d; In... 5 util_random.fg0:5:
¢ [loop in fill_uniform_real at util_random.f... [@ 1 Inefficient memory access pattems .. 0.170s1 0170s1 Vectorized (Body) AVX 4 Floatsd 10 Unrolled by 4 util_random.f90:3
[loop in fill_uniform_real at util_random.f3... [0.156s1 0.156s1 Vectorized (Body) AVX 4 Float64 10 Unrolled by 4 util_random.f90:3
[loop in experiment1 at ppmd01.f90:117] [m} 0.153s1 0.153s1 Vectorized (Body) AVX 4 Divisions; Inserts Float64 10 ppmd01.f30:117
[+ [loop in fill_uniform_real at util_random.f9... [@1 Serialized user function call(s) present 0.152s1 0.152s1 Vectorized (Body) AVX 4 Extracts Float64 2 util_random.f90:1.
i+ [loop in experimentl at ppmdoLl.f... a 0.100s1 0.100s(Vectorized (B... AVX 4 Divisions; Inserts Floaté4 10 ppmdol1.f90:1..
[[loop in fill_uniform_real at util_random.fo... [] @1 Serialized user function call(s) present 0.067s(0.067st Vectorized (Body) AVX 4 Float64 1 util_random.f90:1
= [loop in ppmd01 at ppmd01.f90:99] [m} 0.000s 4.287s I Scalar @ inner loop was alread ... Unpacks Float64 16 ppmdo1.f90:99

[
Function Call Sites and Loops (] Vector Issues Self Time Total Time Type Why No Vectorization?

4]

K@ [loop in experimentl at ppmdoOl.f...

4.034s[1| 4.034s[_]|Vectorized (B...

" [loop in experimentl at ppmd01.f90:117] 0.153s1 0.153s1 Vectorized (Body)

" [loop in experimentl at ppmd01.f90:100] 0.100s1 0.100s(Vectorized (Body)

Oo0rO™O0O0O

315 [loop in ppmd01 at ppmd01.f90:99] 0.000s(4.287s mmm Scalar @ inner loop was alread ...

111

File View Help

b O Ba T AH S O

Welcome | €000 & |

& Check memory access patterns in your application

4 summary %% Survey Report % Refinement Reports ' (& Annotation Report

Elapsed time: 224.49s [Vectorized| [0 Not Vectorized|["| FILTER: |All Module_~ [|ppmd01.fo0 _~ [|Loops - ||al Threads R

Site Locationa ILoop-Cam’ed Dependencies |Stn’des Distribution lAccess Pattern Isite Name

" [loop in experimentl at ppmd01.f90:1... No information available 50% / 50% / 0%
" [loop in experimentl at ppmd01.f90:1... No information available 50% / 50% / 0%

@[loop in experimentl at ppmd01.f90:1 .., No information available 50% /0% / 50%

Mixed strides loop_site_15
Mixed strides loop_site_18

Mixed strides loop_site_20

Memory Access Patterns Report | Dependencies Report ¢ Recommendations

D | |Stride

»P3 @ 1
»P6 [
»P12 @ -43790546; -32607650; -30850839; -29707033; -21902228; -14150377; -10835

50%:percentage of memory instructions with unit stride or stride 0 accesses

Unit stride (stride 1) = Instruction accesses memory that consistently changes
by one element from iteration to iteration
Uniform stride (stride 0) = Instruction accesses the same memory from iteration to iteration
0%: percentage of memory instructions with fixed or constant non-unit
stride accesses
Constant stride (stride N) = Instruction accesses memory that consistently changes
by N elements from iteration to iteration
Example: for the double floating point type, stride 4 means the memory
address accessed by this instruction increased by 32 bytes, (4*sizeof(double))
with each iteration

@6 @ 50%: percentage of memory instructions with irregular (variable or random)

stride accesses
Irregular stride = Instruction accesses memory addresses that change by an
unpredictable number of elements from iteration to iteration
Typically observed for indirect indexed array accesses, for example, alindex[i]]
B - gather (irregular) accesses, detected for v(p)gatherk instructions on AVX2
Instruction Set Architecture
@ - scatter (irregular) accesses, detected for v(p)scatter instructions on AVX2
Instruction Set Architecture

Typt
lUnit
Pare
Varii

112

File View Help
b O Ba T AH S O

Welcome | €000 & |

& Check memory access patterns in your application

Elapsed time: 224.49s [Vectorized| [0 Not Vectorized|["| FILTER: |All Module_~ [|ppmd01.fo0 _~ [|Loops - ||al Threads R

@ summary %% Survey Report % Refinement Reports = ¢ Annotati

Site Locationa ILoop-Cam’ed Dependencies |Stn’des Distribution lAccess Pattern Isite Name
" [loop in experimentl at ppmd01.f30:1... No information available 50% / 50% / 0% Mixed strides loop_site_15
" [loop in experimentl at ppmd01.f90:1... No information available 50% /50% /0% Mixed strides loop_site_18

@[loop in experimentl at ppmd01.f90:1 .., No information available 50% /0% E Mixed strides loop_site_20

50%:percentage of memory instructions with unit stride or stride 0 accesses

Unit stride (stride 1) = Instruction accesses memory that consistently changes
by one element from iteration to iteration

Uniform stride (stride 0) = Instruction accesses the same memory from iteration to iteration
@ 0%: percentage of memory instructions with fixed or constant non-unit

stride accesses

Constant stride (stride N) = Instruction accesses memory that consistently changes

by N elements from iteration to iteration —

: : Example: for the double floating point type, stride 4 means the memory L

Memaory Access Pattems Report | | R address accessed by this instruction increased by 32 bytes, (4*sizeof(double))
D l |Stride with each iteration Typt
bP3 @ 1 @E @ 50%: percentage of memory instructions with irregular (variable or random) lUnit
bP6 @ stride accesses Parz

Irregular stride = Instruction accesses memory addresses that change by an

unpredictable number of elements from iteration to iteration

Typically observed for indirect indexed array accesses, for example, alindex[i]]

B - gather (irregular) accesses, detected for v(p)gatherk instructions on AVX2
Instruction Set Architecture

@ - scatter (irregular) accesses, detected for v(p)scatter instructions on AVX2
Instruction Set Architecture

b P12 @ -43790546; -32607650; -30850839; -29707033; -21902228; -14150377; -1083 \Varii

113

File View Help

b O Ba T AH S O

Welcome | €000 & |

& Check memory access patterns in your application

Elapsed time: 224.49s [Vectorized| [0 Not Vectorized|["| FILTER: |All Module_~ [|ppmd01.fo0 _~ [|Loops - ||al Threads R

@ summary %% Survey Report % Refinement Reports = ¢ Annotati

Site Locationa ILoop-Cam’ed Dependencies |Stn’des Distribution lAccess Pattern Isite Name
" [loop in experimentl at ppmd01.f30:1... No information available 50% / 50% / 0% Mixed strides loop_site_15
" [loop in experimentl at ppmd01.f90:1... No information available 50% /50% /0% Mixed strides loop_site_18

50%:percentage of memory instructions with unit stride or stride 0 accesses

Unit stride (stride 1) = Instruction accesses memory that consistently changes

by one element from iteration to iteration

Uniform stride (stride 0) = Instruction accesses the same memory from iteration to iteration
@ 0%: percentage of memory instructions with fixed or constant non-unit

stride accesses

Constant stride (stride N) = Instruction accesses memory that consistently changes

by N elements from iteration to iteration

Example: for the double floating point type, stride 4 means the memory

address accessed by this instruction increased by 32 bytes, (4*sizeof(double))

Memory Access Patterns Report | Dependencies Report ¢ Recommendations

@[loop in experimentl at ppmd01.f90:1 .., No information available 50% /0% E Mixed strides loop_site_20

Typt

ID | |Stride /__mm.each.l.te:a.rmn
bP3 @ 1 @6 @ 50%: percentage of memory instructions with irregular (variable or random)
bP6 @ stride accesses
b P12 43790546; -32607650; -30850839; -29707033; -21902228; -14150377; -Jog3g cgular stride = Instruction accesses memory addresses that change by an
a - o 0o 0 o 0 0 unpredictable number of elements from iteration to iteration
Typically observed for indirect indexed array accesses, for example, alindex[i]]
B - gather (irregular) accesses, detected for v(p)gatherk instructions on AVX2
Instruction Set Architecture
@ - scatter (irregular) accesses, detected for v(p)scatter instructions on AVX2
Instruction Set Architecture

Uni
Par:
Vari

114

. Advisor tells us

- Vectorization is ok

. Strided memory access in the random access loop is a
problem

. Let’s run a memory access analysis in VTune

115

gou
‘p-ll

$ssh —X vsc20170@login.hpc.uantwerpen.be
Last login: Thu Sep 8 16:38:25 2016 from 143.169.185.55

Welcome to Hopper!

vsc20170@1ln02 ~$ module load VTune
vsc20170@1ln02 ~$ module list
Currently Loaded Modulefiles:

1) GCCcore/5.4.0 4) ifort/2016.3.210-GCC-5.4.0-2.26 7) VTune/2016_update3
2) binutils/2.26-GCCcore-5.4.0 5) iccifort/2016.3.210-GCC-5.4.0-2.26
3) icc/2016.3.210-GCC-5.4.0-2.26 6) Advisor/2016_update4

vsc20170@1n02 ~$%
vsc20170@1ln02 ~$ amplxe—-qgui &

116

VLAl
oot o

e0ce
Project Navigator

s /user/antwerpen/201/vsc20170/intel/amplxe;...

- aE

[rooohs

[roolhs

[&m r002hs

[&m r003hs

[&m roo4ah

[&m ro05ah

[roo6hs

[# roo7macc

[&m ro08macc

|X| fuser/antwerpen/201/vsc20170/intel/amplxe/projects/| d01 - Intel VTune Amplifier

® s &2l b dE @ Welcome)(

(@ Getting Started

Welcome to Intel VTune Amplifier XE 2016

Performance Profiler

Current project: ppmd01

P Memory Access Analysis New Project...
P Basic Hotspots Analysis Open Project...
P Advanced Hotspots Analysis & Open Result

P New Analysis...
Import Result...
Configure Project...

Recent Projects: Recent Results:

> r008macc [ppmd01]
> r007macc [ppmd01]
> r006hs [ppmd01]
> r000hs [ppmd01]
> r005ah [ppmd01

A

117

e0ce
Project Navigator

s /user/antwerpen/201/vsc20170/intel/amplxe;...

- aE

[rooohs

|X| fuser/antwerpen/201/vsc20170/intel/amplxe/projects/| d01 - Intel VTune Amplifier

® s B2l b3 @ Welcome)(

[&m r001hs

[&m r002hs

[ro03hs —

[&m roo4ah

[& roo5ah

[roo6hs

[# roo7macc

[&m ro08macc

/,;l Some Hot Spot analyses]

(@ Getting Started

Welcome to Intel VTune Amplifier XE 2016

Performance Profiler

Current project: ppmd01

P Memory Access Analysis New Project...
P Basic Hotspots Analysis Open Project...
P Advanced Hotspots Analysis & Open Result

P New Analysis...
Import Result...
Configure Project...

Recent Projects: Recent Results:

> r008macc [ppmd01]
> r007macc [ppmd01]
> r006hs [ppmd01]
> r000hs [ppmd01]
> r005ah [ppmd01

A

118

e0ce
Project Navigator

s /user/antwerpen/201/vsc20170/intel/amplxe;...

- aE

[rooohs

[&m r001hs
[&m r002hs

[&m r003hs

|X| fuser/antwerpen/201/vsc20170/intel/amplxe/projects/| d01 - Intel VTune Amplifier

® s &2l b dE @ Welcome)(

[&m roo4ah

[&m ro05ah

[roo6hs

[# roo7macc

[&m ro08macc

— Some Advanced Hot spot analyses]

(@ Getting Started

Welcome to Intel VTune Amplifier XE 2016

Performance Profiler

Current project: ppmd01

P Memory Access Analysis New Project...
P Basic Hotspots Analysis Open Project...
P Advanced Hotspots Analysis & Open Result

P New Analysis...
Import Result...
Configure Project...

Recent Projects: Recent Results:

> r008macc [ppmd01]
> r007macc [ppmd01]
> r006hs [ppmd01]
> r000hs [ppmd01]
> r005ah [ppmd01

A

119

s /user/antwerpen/201/vsc20170/intel/amplxe;...

- aE

[rooohs

[&m r001hs
[&m r002hs

[&m r003hs

[&m roo4ah

[&m ro05ah

[roo6hs

[# roo7macc

[NON) [X| fuser/antwerpen/201/vsc20170/intel/amplxe/projects/ppmd01 - Intel VTune Amplifier
B ® s | [B (WO weicome X

[&m ro08macc

(@ Getting Started
vwwvercorme tomeer v I IUNne /—\mpllﬁer XE 2016

Performance Profiler

1 Some Memory ACCess analyses

Current project: ppmd01

P Memory Access Analysis New Project...
P Basic Hotspots Analysis Open Project...
P Advanced Hotspots Analysis & Open Result

P New Analysis...
Import Result...
Configure Project...

Recent Projects: Recent Results:

> r008macc [ppmd01]
> r007macc [ppmd01]
> r006hs [ppmd01]
> r000hs [ppmd01]
> r005ah [ppmd01

A

120

Intel Vtune Amplifier

|X| fuser/antwerpen/201/vsc20170/intel/famplxe/projects/ppmd01 - Intel VTune Amplifier

% gﬂl[&]@[PGDD"'(@ Welcome
Juser/antwerpen/201/vsc20170/intel/amplxe/... g .

% Choose Target and Analysis Type

o vomaon]

Project Navigator

Intel VTune Amplifier XE 2016

r008macc New Am... X

CWNEEERECEN 4 Analysis Type

[#m r00ohs - -

@‘n o A’ m gy :* Memory Aecess c°py m

[f‘f“ roozhs ~ [z Algorithm Analysis Measure a set of metrics to identify memory access related issues (for 5 ‘

[r003hs A Basic Hotspots example, specific for NUMA architectures). This analysis type is based on the

fim ro04ah ~ P hardware event-based sampling collection. Learn more (F1) 0 Start Paused

& ro0sah A Advanced Hotspots L),
ro05al L

é“m r006hs A Concurrency CPU sampling interval, ms: 1 & Choose Target

7 r007macc A Locks and Waits Analyze memory objects

— A HPC Performance Characterizatio - . .) —

[am ro08macc Minimal memory object size to track, in bytes: |1024 5

¥ [Microarchitecture Analysis
A General Exploration

P icmory access

A TSX Exploration

Evaluate max DRAM bandwidth

[Analyze OpenMP regions

A TSX Hotspots ‘ © Details
A SGX Hotspots
¥ [z Platform Analysis
A CPU/GPU Concurrency
A GPU Hotspots (preview)
A Disk Input and Output (preview)
[z Custom Analysis

-3 Command Line... [/

121

New analysis Intel Vtune Amplifier

[] @ L |X| fuser/antwerpen/201/vsc20170/intel/famplxe/projects/ppmd01 - Intel VTune Amplifier
:mmwgator S B b ® = | @ welcome ro08macc New Am... X
Juser/antwerpen/201/vsc20170/intel/amplxe/... g . e p
% Choose Target and Analysis Type Intel VTune Amplifier XE 2016

A" ppmdol
= CWNEEERECEN 4 Analysis Type

r000hs ; -
o A} m :‘» & Memory fecess c°py m
r002hs L b

< [Algorithm Analysis Measure a set of metrics to identify memory access related issues (for

rooshs ; example, specific for NUMA architectures). This analysis type is based on the | \
ro04ah A Basic Hotspots hardware event-based sampling collection. Learn more (F1) 0 Start Paused

A Advanced Hotspots

(BT (BT

?:

Z[

3
]

[roo5ah
— A Concurrenc CPU sampling interval, ms: 1 _
[#m roo6hs A s and y. piing € Choose Target
[#m ro07macc A Locks and Waits Analyze memory objects
7 1008 A HPC Performance Characterizatio =

ro08macc . B
An < Microarchitecture Analysis Minimal memory object size to track, in bytes: |1024 5

A General Exploration Evaluate max DRAM bandwidth

'*”" [Analyze OpenMP regions

A TSX Exploration
A TSX Hotspots ‘ © Details
A SGX Hotspots

¥ [z Platform Analysis
A CPU/GPU Concurrency
A GPU Hotspots (preview)
A Disk Input and Output (preview)

[z Custom Analysis

-3 Command Line... [/

122

Intel Vtune Amplifier

[] @ |X| fuser/antwerpen/201/vsc20170/intel/famplxe/projects/ppmd01 - Intel VTune Amplifier
::mmwgator B i & B b ® = | @ welcome r008macc New Am... X
Juser/antwerpen/201/vsc20170/intel/amplxe/... g . oo
% Choose Target and Analysis Type Intel VTune Amplifier XE 2016

A" ppmdol
= CWNEEERECEN 4 Analysis Type

r000hs - 0
o A’ m gy :* Memory fecess c°py m
r002hs L b

< [Algorithm Analysis Measure a set of metrics to identify memory access related issues (for

rooshs : example, specific for NUMA architectures). This analysis type is based on the | \
r004ah g BZSIC Ho;spots hardware event-based sampling collection. Learn more (F1) G Start Paused
- Advanced Hotspots L)

(BT (BT

?:

EE

[roo5ah
— A Concurrenc CPU sampling interval, ms: 1 _
[#m roo6hs A s and y. piing € Choose Target
[&m ro07macc A Locks and Waits Analyze memory objects
7 1008 A HPC Performance Characterizatio =

ro08macc . B
An < Microarchitecture Analysis Minimal memory object size to track, in bytes: |1024 5

A General Exploration Evaluate max DRAM bandwidth

'*”" [Analyze OpenMP regions

A TSX Exploration
A TSX Hotspots \"G)\Details
A SGX Hotspots

¥ [z Platform Analysis
A CPU/GPU Concurrency
A GPU Hotspots (preview)

A Disk Input and Output (preview) Analyze memory access]

[z Custom Analysis

-3 Command Line... [/

123

Intel Vtune Amplifier

[] @ |X| fuser/antwerpen/201/vsc20170/intel/famplxe/projects/ppmd01 - Intel VTune Amplifier
::mmwgator B i & [b ® = | @ welcome ro08macc New Am... X
Juser/antwerpen/201/vsc20170/intel/amplxe/... g .
% Choose Target and Analysis Type

Intel VTune Amplifier XE 2016

o vomaon]

fia ro00hs CWNEWEERETGEN 4 Analysis Type
[&m r001hs By B A

[&% ro02hs - -

. ¥ [z Algorithm Analysis

[#m roo3hs .

. A Basic Hotspots

[&m roo4ah

. A Advanced Hotspots

[am r005ah

- A Concurrency

[#m roo6hs)

. A Locks and Waits

[#m r007macc .
. A HPC Performance Characterizatio
[am ro08macc

¥ [Microarchitecture Analysis
A General Exploration
Y emory access
A TSX Exploration
A TSX Hotspots
A SGX Hotspots

¥ [z Platform Analysis
A CPU/GPU Concurrency
A GPU Hotspots (preview)
A Disk Input and Output (preview)

[z Custom Analysis

Memory Access Copy

Measure a set of metrics to identify memory access related issues (for
example, specific for NUMA architectures). This analysis type is based on the
hardware event-based sampling collection. Learn more (F1)

CPU sampling interval, ms: 1

Analyze memory objects
Minimal memory object size to track, in bytes: |1024 i
Evaluate max DRAM bandwidth

[Analyze OpenMP regions

-® Details

3 Command Line...

124

Intel Vtune Amplifier

[NN)
Project Navigator

s /user/antwerpen/201/vsc20170/intel/amplxe/...

v @ ppmdol
r000hs
r001hs
r002hs
r003hs
roo4ah
r005ah
r006hs
ro07macc

(5 % BF BF BF BF BF BF BF

® s | e [P ® = | @[welcome ro08macc New Am... X

|X| fuser/antwerpen/201/vsc20170/intel/amplxe/projects/ppmd01 - Intel VTune Amplifier

Collecting data... Intel VTune Amplifier XE 2016
@ Analysis Target Analysis Type Collection Log
‘% Collecting Memory Access data /i

Tue 20 Sep 2016 02:50:47 PM CEST The Intel VIune Amplifier XE 2016 is collecting data.
Closing this window will cancel the analysis and terminate the profiled application in case
the Launch Application target type is selected.
/& To enable hardware event-base sampling, VTune Amplifier has disabled the NMI watchdog .
timer. The watchdog timer will be re-enabled after collection completes. P
Per-node peak bandwidth measurement is enabled for this collection. Collection time m... aiaicaccal

= Mark Timeline

Elapsed time: 00:00:13

125

Intel Vtune Amplifier

X| [userfantwerpen/201/vsc20170/intel/amplxe/projects/ppmd01 - Intel VTune Amplifier

T . o —
e Haviaater & i | 2 = @|| welcome r008macc roooma... X =
s /user/antwerpen/201/vsc20170/intel/amplxe/... g . . = .
o do1 m Memory Access Memory Usage viewpoint (change) ® Intel VTune Amplifier XE 2016
v Ppm
fim r000hs @ Analysis Target Analysis Type | 2 Collection Log % Bottom-up | | B Platform
[&m r001hs - . G —
= r002hs) Elapsed Time : 44.130s
r.: 003h CPU Time : 42.827s
%m : s) Memory Bound : 58.0%
&5 ro04ah The metric value is high. This can indicate that the significant fraction of execution pipeline slots could be stalled due to demand memory load and stores.
[r005ah Use Memory Access analysis to have the metric breakdown by memory hierarchy, memory bandwidth information, correlation by memory objects.
[&m r006hs L1 Bound ”: 0.033
[&m ro07macc L2 Bound : 0.000
fim r008macc L3 Bound : 0.000
- () DRAM Bound : 0.470
ey ro09macc .
r&“- This metric shows how often CPU was stalled on the main memory (DRAM). Caching typically improves the latency and increases performance.
Memory Bandwidth ~: 0.712

This metric represents a fraction of cycles during which an application could be stalled due to approaching bandwidth limits of the main memory (DRAM).
This metric does not aggregate requests from other threads/cores/sockets (see Uncore counters for that). Consider improving data locality in NUMA multi-
socket systems.

¥} Memory Latency : 0.252
This metric represents a fraction of cycles during which an application could be stalled due to the latency of the main memory (DRAM). This metric does
not aggregate requests from other threads/cores/sockets (see Uncore counters for that). Consider optimizing data layout or using Software Prefetches
(through the compiler).

Remote /Local DRAM Ratio ~: 0.000
Local DRAM “: 1.000
The number of CPU stalls on loads from the local memory exceeds the threshold. Consider caching data to improve the latency and increase the
performance.
Remote DRAM : 0.000
Remote Cache *: 0.000
Loads: 44,152,066,228
Stores: 10,512,015,768
>) LLC Miss Count : 1,600,048,000
Average Latency (cycles) ~: 43
Total Thread Count: 4
Paused Time *: 0s

() Top Memory Objects

This section lists the most actively used memory objects in your application.

Memory Object Loads Stores LLC Miss Count
Unknown 19,448,029,172 [Unknown] 1,600,048,000

126

Intel Vtune Amplifier

X| [userfantwerpen/201/vsc20170/intel/amplxe/projects/ppmd01 - Intel VTune Amplifier

T . o —
L ® s | 2 P = | @| welcome ro08macc roo9ma... X [=
s /user/antwerpen/201/vsc20170/intel/amplxe/... g . . =
m Memory Access Memory Usage viewpoint (change) ®
¥ & ppmdol
fim r000hs @ Analysis Target Analysis Type | 2 Collection Log % Bottom-up | | B Platform
[&m r001hs - . G —
& ro0zhs) Elapsed Time : 44.130s
% 1003hs CPU Time ?: 42.827s Our program is memory bound
-) Memory Bound : 58.0%
& r004ah The metric value is high. This can indicate that the significant fraction of execution pipeline slots could be stalled due to demand memory load and stores.
[r005ah Use Memory Access analysis to have the metric breakdown by memory hierarchy, memory bandwidth information, correlation by memory objects.
[&m r006hs L1 Bound ”: 0.033
[&m ro07macc L2 Bound : 0.000
fim ro08macc L3 Bound : 0.000
- () DRAM Bound : 0.470
ey ro09macc .
r&“- This metric shows how often CPU was stalled on the main memory (DRAM). Caching typically improves the latency and increases performance.
Memory Bandwidth ~: 0.712

This metric represents a fraction of cycles during which an application could be stalled due to approaching bandwidth limits of the main memory (DRAM).
This metric does not aggregate requests from other threads/cores/sockets (see Uncore counters for that). Consider improving data locality in NUMA multi-
socket systems.

¥} Memory Latency : 0.252
This metric represents a fraction of cycles during which an application could be stalled due to the latency of the main memory (DRAM). This metric does
not aggregate requests from other threads/cores/sockets (see Uncore counters for that). Consider optimizing data layout or using Software Prefetches
(through the compiler).

Remote /Local DRAM Ratio ~: 0.000
Local DRAM “: 1.000
The number of CPU stalls on loads from the local memory exceeds the threshold. Consider caching data to improve the latency and increase the
performance.
Remote DRAM : 0.000
Remote Cache *: 0.000
Loads: 44,152,066,228
Stores: 10,512,015,768
>) LLC Miss Count : 1,600,048,000
Average Latency (cycles) ~: 43
Total Thread Count: 4
Paused Time *: 0s

() Top Memory Objects

This section lists the most actively used memory objects in your application.

Memory Object Loads Stores LLC Miss Count
Unknown 19,448,029,172 [Unknown] 1,600,048,000

127

Intel Vtune Amplifier

Project Navigator

s /user/antwerpen/201/vsc20170/intel/amplxe/...

¥ & ppmdol

5

/31 (36 (36 (36 (36 (36 (36 (36 (31 |

r000hs
ro0lhs
ro002hs
ro03hs
r004ah
ro05ah
r006hs
ro07macc
roo8macc

X| [userfantwerpen/201/vsc20170/intel/amplxe/projects/ppmd01 - Intel VTune Amplifier
& i | [b ® & | @) welcome r008macc roooma... X

@ Analysis Target Analysis Type | B8 Collection Log +% Bottom-up| |B@ Platform

) Elapsed Time': 44.130s

CPU Time ~: 42.827s
) Memory Bound : 58.0%

The metric value is high. This can indicate that the significant fraction of execution pipeline slots could be stalled due to demand memory load and stores.
Use Memory Access analysis to have the metric breakdown by memory hierarchy, memory bandwidth information, correlation by memory objects.

L1 Bound “: 0.033

L2 Bound : 0.000 .
L3 Bound %: 0.000 Due to complete cache misses
() DRAM Bound “: 0.470

This metric shows how often CPU was stalled on the main memory (DRAM). Caching typically improves the latency and increases performance.

Memory Bandwidth = 0.712

This metric represents a fraction of cycles during which an application could be stalled due to approaching bandwidth limits of the main memory (DRAM).
This metric does not aggregate requests from other threads/cores/sockets (see Uncore counters for that). Consider improving data locality in NUMA multi-
socket systems.

¥} Memory Latency : 0.252
This metric represents a fraction of cycles during which an application could be stalled due to the latency of the main memory (DRAM). This metric does
not aggregate requests from other threads/cores/sockets (see Uncore counters for that). Consider optimizing data layout or using Software Prefetches
(through the compiler).

Remote /Local DRAM Ratio ~: 0.000
Local DRAM “: 1.000
The number of CPU stalls on loads from the local memory exceeds the threshold. Consider caching data to improve the latency and increase the
performance.
Remote DRAM : 0.000
Remote Cache *: 0.000
Loads: 44,152,066,228
Stores: 10,512,015,768
>) LLC Miss Count : 1,600,048,000
Average Latency (cycles) ~: 43
Total Thread Count: 4
Paused Time *: 0s

() Top Memory Objects

This section lists the most actively used memory objects in your application.

Memory Object Loads Stores LLC Miss Count
Unknown 19,448,029,172 [Unknown] 1,600,048,000

m Memory Access Memory Usage viewpoint (change) ® Intel VTune Amplifier XE 2016

128

Intel Vtune Amplifier

X| [userfantwerpen/201/vsc20170/intel/amplxe/projects/ppmd01 - Intel VTune Amplifier

Project Navigator & i | 2 = @|| welcome r008macc roooma... X =
s /user/antwerpen/201/vsc20170/intel/amplxe/... g . . = :
o do1 m Memory Access Memory Usage viewpoint (change) ® Intel VTune Amplifier XE 2016
v Ppm
fim r000hs @ Analysis Target Analysis Type | 2 Collection Log % Bottom-up | | B Platform
[&m r001hs - . 16 —
= r002hs) Elapsed Time : 44.130s
r.: 003h CPU Time : 42.827s
%m : s) Memory Bound : 58.0%
&5 ro04ah The metric value is high. This can indicate that the significant fraction of execution pipeline slots could be stalled due to demand memory load and stores.
[r005ah Use Memory Access analysis to have the metric breakdown by memory hierarchy, memory bandwidth information, correlation by memory objects.
[&m r006hs L1 Bound ”: 0.033
[&m ro07macc L2 Bound : 0.000
fim r008macc L3 Bound “: 0.000
= () DRAM Bound : 0.470
r&“ This metric shows how often CPU was stalled on the main memory (DRAI N
Memory Bandwidth @: — Bandwidth saturates fast because we move an
Memory Bandwidth ~: N

This metric represents a fraction of cycles during which an app
This metric does not aggregate requests from other threads/cores/soc
socket systems.

entire cache line for almost every data item

¥} Memory Latency : 0.252
This metric represents a fraction of cycles during which an application could be stalled due to the latency of the main memory (DRAM). This metric does
not aggregate requests from other threads/cores/sockets (see Uncore counters for that). Consider optimizing data layout or using Software Prefetches |_|
(through the compiler).

Remote /Local DRAM Ratio ~: 0.000
Local DRAM “: 1.000
The number of CPU stalls on loads from the local memory exceeds the threshold. Consider caching data to improve the latency and increase the
performance.
Remote DRAM : 0.000
Remote Cache *: 0.000
Loads: 44,152,066,228
Stores: 10,512,015,768
>) LLC Miss Count : 1,600,048,000
Average Latency (cycles) ~: 43
Total Thread Count: 4
Paused Time *: 0s

() Top Memory Objects

This section lists the most actively used memory objects in your application.

Memory Object Loads Stores LLC Miss Count
Unknown 19,448,029,172 [Unknown] 1,600,048,000

129

Intel Vtune Amplifier

X| [userfantwerpen/201/vsc20170/intel/amplxe/projects/ppmd01 - Intel VTune Amplifier

T . o —
e Haviaater & i | 2 = @|| welcome r008macc roooma... X =
s /user/antwerpen/201/vsc20170/intel/amplxe/... g . . = .
o do1 m Memory Access Memory Usage viewpoint (change) ® Intel VTune Amplifier XE 2016
v Ppm
fim r000hs @ Analysis Target Analysis Type | 2 Collection Log % Bottom-up | | B Platform
[&m r001hs - . G —
= r002hs) Elapsed Time : 44.130s
r.: 003h CPU Time : 42.827s
%m : s) Memory Bound : 58.0%
&5 ro04ah The metric value is high. This can indicate that the significant fraction of execution pipeline slots could be stalled due to demand memory load and stores.
[r005ah Use Memory Access analysis to have the metric breakdown by memory hierarchy, memory bandwidth information, correlation by memory objects.
[&m r006hs L1 Bound ”: 0.033
[&m ro07macc L2 Bound : 0.000
fim r008macc L3 Bound : 0.000
= -) DRAM Bound : 0.470
ey ro09macc .
r&“- This metric shows how often CPU was stalled on the main memory (DRAM). Caching typically improves the latency and increases performance.
Memory Bandwidth ~: 0.712

This metric represents a fraction of cycles during which an application could be stalled due to approaching bandwidth limits of the main memory (DRAM).
This metric does not aggregate requests from other threads/cores/sockets (see Uncore counters for that). Consider improving data locality in NUMA multi-
socket systems.

¥} Memory Latency : 0.252
This metric represents a fraction of cycles during which an application could be stalled due to the latency of the main memory (DRAM). This metric does
not aggregate requests from other threads/cores/sockets (see Uncore counters for that). Consider optimizing data layout or using Software Prefetches
(through the compiler).

Remote /Local DRAM Ratio ~: 0.000
Local DRAM “: 1.000
The number of CPU stalls on loads from the local memory exceeds the threshold. Consider caching data to improve the latency and increase the
performance.
Remote DRAM : 0.000
Remote Cache *: 0.000
Loads: 44,152,066,228 H
- 10.51.015 768 # complete cache misses]
>) LLC Miss Count “: 1,600,048,000
Average Latency (cycles) ~: 43
Total Thread Count: 4
Paused Time *: 0s

() Top Memory Objects

This section lists the most actively used memory objects in your application.

Memory Object Loads Stores LLC Miss Count
Unknown 19,448,029,172 [Unknown] 1,600,048,000

130

Intel Vtune Amplifier

X| [userfantwerpen/201/vsc20170/intel/amplxe/projects/ppmd01 - Intel VTune Amplifier

T . o —
e Haviaater & i | 2 = @|| welcome r008macc roooma... X =
s /user/antwerpen/201/vsc20170/intel/amplxe/... g . . = .
o do1 m Memory Access Memory Usage viewpoint (change) ® Intel VTune Amplifier XE 2016
v Ppm
fim r000hs @ Analysis Target Analysis Type | 2 Collection Log % Bottom-up | | B Platform
[&m r001hs - . G —
= r002hs) Elapsed Time : 44.130s
r.: 003h CPU Time : 42.827s
%m : s) Memory Bound : 58.0%
&5 ro04ah The metric value is high. This can indicate that the significant fraction of execution pipeline slots could be stalled due to demand memory load and stores.
[r005ah Use Memory Access analysis to have the metric breakdown by memory hierarchy, memory bandwidth information, correlation by memory objects.
[&m r006hs L1 Bound ”: 0.033
[&m ro07macc L2 Bound : 0.000
fim r008macc L3 Bound : 0.000
= -) DRAM Bound : 0.470
ey ro09macc .
r&“- This metric shows how often CPU was stalled on the main memory (DRAM). Caching typically improves the latency and increases performance.
Memory Bandwidth ~: 0.712

This metric represents a fraction of cycles during which an application could be stalled due to approaching bandwidth limits of the main memory (DRAM).
This metric does not aggregate requests from other threads/cores/sockets (see Uncore counters for that). Consider improving data locality in NUMA multi-
socket systems.

¥} Memory Latency : 0.252
This metric represents a fraction of cycles during which an application could be stalled due to the latency of the main memory (DRAM). This metric does
not aggregate requests from other threads/cores/sockets (see Uncore counters for that). Consider optimizing data layout or using Software Prefetches
(through the compiler).

Remote /Local DRAM Ratio ~: 0.000
Local DRAM “: 1.000
The number of CPU stalls on loads from the local memory exceeds the threshold. Consider caching data to improve the latency and increase the
performance.
Remote DRAM : 0.000
Remote Cache *: 0.000
Loads: 44,152,066,228
Stores: 10,512,015,768
>) LLC Miss Count “: 1,600,048,000
Average Latency (evdes) * Average # of cycles we have to wait for
otal Thread Count: 4
Paused Time “: 0s a data |tem (ShOU|d be ~1 ')

() Top Memory Objects

This section lists the most actively used memory objects in your application.

Memory Object Loads Stores LLC Miss Count
Unknown 19,448,029,172 [Unknown] 1,600,048,000

131

Intel Vtune Amplifier

00 [X| fuser/antwerpen/201/vsc20170/intel/amplxe/projects/ppmd01 - Intel VTune Amplifier

;r:ed Navigator ® s &= el b P = | @|| welcome rollge New Am... X ’ = ‘
Juser/antwerpen/201/vsc20170/intel/amplxe/... . e
% Choose Target and Analysis Type Intel VTune Amplifier XE 2016

¥ @ ppmdol

& ro0ohs CWNEIEEREIGTEE 5 Analysis Type ,)

AE‘ oy é} h & & general Exploration by m

A*m roozhs < [z Algorithm Analysis Analyze general issues affecting the performance of your application. This analysis type | -

An r003hs A Basic Hotspots is based on the hardware event-based sampling collection. Learn more (F1)

7 r004ah b P @ Start Paused

A;“ r005ah A Advanced Hotspots O Collect stacks !

% r006hs # Concurrency Analyze memory bandwidth ¢ Choose Target

. A Locks and Waits)

[am r007macc o Evaluate max DRAM bandwidth

- A HPC Performance Characterizatio i

r00Bmacc ¥ [Microarchitecture Analysis IO 10 B T T

(& ro09macc AT [Analyze user tasks, events, and counters

[&m r010ge

= A Memory Access l © Details

A TSX Exploration
A TSX Hotspots
A SGX Hotspots
< [z Platform Analysis H
A CPU/GPU Concurrency
A GPU Hotspots (preview)
A Disk Input and Output (preview)
[z Custom Analysis

K1 | 2l 23 Command Line...

132

Intel Vtune Amplifier

N\ [user/antwerpen/201/vsc20170/intel/amplxe/projects/ppmd01 - Intel VTune Amplifier

ject Navigat
lavigator > 5
i NV Bt bE®S
i /user/antwerpen/201/vsc20170/intel/amplxe/...
A mdol -
@rr T STl General Exploration
[r000hs 8 Collection Log % Bottom-up| | «% =]
fi 001h This view uses hardware event-based metrics to show code
Am T S = - : —— !
(A A e regions that experienced potentially significant architectural
[&m r002hs @ Ela psed Time : 35.740s [0 bottlenecks. Hover over a metric name in the grid for the metric
= Clockticks: 126,124,189,186 d ipti
% rooshs lescription.
- Instructions Retired: 48,346,072,519
s ro04ah cPiRate ?: 2.609 Use this view to: _)
[An ro05ah The CPI may be too high. This could be caused by issues such as memory stalls, instruq- /dentify code regions (modules, functions, and so on) with the
& roo6hs Explore the other hardware-related metrics to identify what is causing high CPI. ighest execution time. . o .
— - Analyze detected hardware issues highlighted by pink cells and
[Am ro07macc MUX Reliability = 0.996 get tuning recommendations.
i roo8macc >) Front-End Bound : 0.7%
r:T“ r009macce >) Bad Speculation : 0.0% Press F1 for help on each window.
& ro10ge - Back:End Bound) 87:3% Show the analysis description when result opens
- Identify slots where no uOps are delivered due to a lack of required resources for accep!
zjrollge describe a portion of the pipeline where the out-of-order scheduler dispatches ready uOps |n!o Helr respegve execugon unEs, ang, once compl e!e!, Hese

uOps get retired according to program order. Stalls due to data-cache misses or stalls due to the overloaded divider unit are examples of back-end bound

issues.
Memory Bound : 66.2%

The metric value is high. This can indicate that the significant fraction of execution pipeline slots could be stalled due to demand memory load and stores.
Use Memory Access analysis to have the metric breakdown by memory hierarchy, memory bandwidth information, correlation by memory objects.
) L1 Bound “: 0.040
This metric shows how often machine was stalled without missing the L1 data cache. The L1 cache typically has the shortest latency. However, in certain
cases like loads blocked on older stores, a load might suffer a high latency even though it is being satisfied by the L1. Note that this metric value may be
highlighted due to DTLB Overhead or Cycles of 1 Port Utilized issues.
DTLB Overhead : 0.441
A significant proportion of cycles is being spent handling first-level data TLB misses. As with ordinary data caching, focus on improving data locality and

reducing working-set size to reduce DTLB overhead. Additionally, consider using profile-guided optimization (PGO) to collocate frequently-used data on the
same page. Try using larger page sizes for large amounts of frequently-used data.

Loads Blocked by Store Forwarding 0.000

Lock Latency : 0.000

Split Loads 0.000

4K Aliasing ~: 0.002

L2 Bound ~: 0.000

>) L3 Bound : 0.000
() DRAM Bound : 0.576

This metric shows how often CPU was stalled on the main memory (DRAM). Caching typically improves the latency and increases performance.

Memory Bandwidth ~: 0.787

This metric represents a fraction of cycles during which an application could be stalled due to approaching bandwidth limits of the main memory (DRAM).
This metric does not aggregate requests from other threads/cores/sockets (see Uncore counters for that). Consider improving data locality in NUMA multi-
socket systems.

&) Memory Latency : 0.190
This metric represents a fraction of cycles during which an application could be stalled due to the latency of the main memory (DRAM). This metric does not
aggregate requests from other threads/cores/sockets (see Uncore counters for that). Consider optimizing data layout or using Software Prefetches
(through the compiler).

Local DRAM : 1.000

The number of CPU stalls on loads from the local memory exceeds the threshold. Consider caching data to improve the latency and increase the
performance.

Remote DRAM ~: 0.000

133

Intel Vtune Amplifier

N\ [user/antwerpen/201/vsc20170/intel/amplxe/projects/ppmd01 - Intel VTune Amplifier

RS ® s | & [b W & @ welcome
i /user/antwerpen/201/vsc20170/intel/amplxe/...

~ @& ppmdol
[&m r000hs

@ General Exploration General Exploration viewpoint (change) ®
[&m r001hs
[&m r002hs

General Exploration
= oo This view uses hardware event-based metrics to show code

oo regions that experienced potentially significant architectural
e bottlenecks. Hover over a metric name in the grid for the metric
ooge description.

e

1 30 3 (5 20 &1 57 5

Use this view to:

- Identify code regions (modules, functions, and so on) with the
highest execution time. X
- Analyze detected hardware issues highlighted by pink cells and

get tuning recommendations. e

Press F1 for help on each window.

Show the analysis description when result opens
g e T T T TS ———

This metric represents a fraction of cycles during which an application could be stalled due to approaching bandwidth limits of the main memory (DRAM).
This metric does not aggregate requests from other threads/cores/sockets (see Uncore counters for that). Consider improving data locality in NUMA multi-
socket systems.

) Memory Latency : 0.190
This metric represents a fraction of cycles during which an application could be stalled due to the latency of the main memory (DRAM). This metric does not
aggregate requests from other threads/cores/sockets (see Uncore counters for that). Consider optimizing data layout or using Software Prefetches
(through the compiler).

Local DRAM : 1.000

The number of CPU stalls on loads from the local memory exceeds the threshold. Consider caching data to improve the latency and increase the
performance.

Remote DRAM ~: 0.000

134

VLAl
oot o

) Elapsed Time: 35.740s

Clockticks: 126,124,189,186
Instructions Retired: 48,346,072,519
CPl Rate : 2.609

The CPI may be too high. This could be caused by issues such as memory stalls, instruction starvation, branch misprediction or long latency instructions.
Explore the other hardware-related metrics to identify what is causing high CPI.

MUX Reliability ®: 0.996
() Front-End Bound : 0.7%
(>) Bad Speculation 0.0%
) Back-End Bound ": 87.3%

Identify slots where no uOps are delivered due to a lack of required resources for accepting more uOps in the back-end of the pipeline. Back-end metrics
describe a portion of the pipeline where the out-of-order scheduler dispatches ready uOps into their respective execution units, and, once completed, these
uOps get retired according to program order. Stalls due to data-cache misses or stalls due to the overloaded divider unit are examples of back-end bound

issues.
() Memory Bound: 66.2%

The metric value is high. This can indicate that the significant fraction of execution pipeline slots could be stalled due to demand memory load and stores.
Use Memory Access analysis to have the metric breakdown by memory hierarchy, memory bandwidth information, correlation by memory objects.

() L1 Bound : 0.040
This metric shows how often machine was stalled without missing the L1 data cache. The L1 cache typically has the shortest latency. However, in certain
cases like loads blocked on older stores, a load might suffer a high latency even though it is being satisfied by the L1. Note that this metric value may be
highlighted due to DTLB Overhead or Cycles of 1 Port Utilized issues.
DTLB Overhead : 0.441

A significant proportion of cycles is being spent handling first-level data TLB misses. As with ordinary data caching, focus on improving data locality and
reducing working-set size to reduce DTLB overhead. Additionally, consider using profile-guided optimization (PGO) to collocate frequently-used data on the
same page. Try using larger page sizes for large amounts of frequently-used data.

Loads Blocked by Store Forwarding ?: 0.000

Lock Latency *: 0.000

Split Loads “: 0.000

4K Aliasing *: 0.002

L2 Bound *: 0.000
(>) L3 Bound : 0.000
() DRAM Bound “: 0.576

This metric shows how often CPU was stalled on the main memory (DRAM). Caching typically improves the latency and increases performance.

Memory Bandwidth ~: 0.787

This metric represents a fraction of cycles during which an application could be stalled due to approaching bandwidth limits of the main memory (DRAM).
This metric does not aggregate requests from other threads/cores/sockets (see Uncore counters for that). Consider improving data locality in NUMA multi-
socket systems.

© Memory Latency 0.190
This metric represents a fraction of cycles during which an application could be stalled due to the latency of the main memory (DRAM). This metric does not
aggregate requests from other threads/cores/sockets (see Uncore counters for that). Consider optimizing data layout or using Software Prefetches
(through the compiler).

Local DRAM “: 1.000

The number of CPU stalls on loads from the local memory exceeds the threshold. Consider caching data to improve the latency and increase the
performance.

Remote DRAM ™: 0.000

Remote Cache ~: 0.000

(>) Store Bound : 0.134

135

VLAl
oot o

) Elapsed Time: 35.740s

Clockticksz) 126,124,189,186 CPI - CyCleS per Instructlon
Instructions Retired: 48,346,072,519 . .
CPI Rate ¥; 2609 Peak performance corresponds to 4 instructions per

The CPI may be too high. This could be caused by issues such as memory stalls, inst
Explore the other hardware-related metrics to identify what is causing high CPI.

cycle in DP vectorized code. Hence CPI should be

MUX Reliability": 0.996 between O 25 and 0 5
Front-End Bound : 0.7%) T
Bad Speculation “: 0.0%

) Back-End Bound : 87.3%

Identify slots where no uOps are delivered due to a lack of required resources for accepting more uOps in the back-end of the pipeline. Back-end metrics
describe a portion of the pipeline where the out-of-order scheduler dispatches ready uOps into their respective execution units, and, once completed, these
uOps get retired according to program order. Stalls due to data-cache misses or stalls due to the overloaded divider unit are examples of back-end bound

issues.
() Memory Bound: 66.2%

The metric value is high. This can indicate that the significant fraction of execution pipeline slots could be stalled due to demand memory load and stores.
Use Memory Access analysis to have the metric breakdown by memory hierarchy, memory bandwidth information, correlation by memory objects.

() L1 Bound : 0.040

This metric shows how often machine was stalled without missing the L1 data cache. The L1 cache typically has the shortest latency. However, in certain
cases like loads blocked on older stores, a load might suffer a high latency even though it is being satisfied by the L1. Note that this metric value may be
highlighted due to DTLB Overhead or Cycles of 1 Port Utilized issues.

DTLB Overhead : 0.441

A significant proportion of cycles is being spent handling first-level data TLB misses. As with ordinary data caching, focus on improving data locality and
reducing working-set size to reduce DTLB overhead. Additionally, consider using profile-guided optimization (PGO) to collocate frequently-used data on the
same page. Try using larger page sizes for large amounts of frequently-used data.

Loads Blocked by Store Forwarding ?: 0.000

Lock Latency *: 0.000

Split Loads “: 0.000

4K Aliasing *: 0.002

L2 Bound *: 0.000
(>) L3 Bound : 0.000
() DRAM Bound “: 0.576

This metric shows how often CPU was stalled on the main memory (DRAM). Caching typically improves the latency and increases performance.

Memory Bandwidth ~: 0.787

This metric represents a fraction of cycles during which an application could be stalled due to approaching bandwidth limits of the main memory (DRAM).
This metric does not aggregate requests from other threads/cores/sockets (see Uncore counters for that). Consider improving data locality in NUMA multi-
socket systems.

© Memory Latency 0.190
This metric represents a fraction of cycles during which an application could be stalled due to the latency of the main memory (DRAM). This metric does not
aggregate requests from other threads/cores/sockets (see Uncore counters for that). Consider optimizing data layout or using Software Prefetches
(through the compiler).

Local DRAM “: 1.000

The number of CPU stalls on loads from the local memory exceeds the threshold. Consider caching data to improve the latency and increase the
performance.

Remote DRAM ™: 0.000

Remote Cache ~: 0.000

(>) Store Bound : 0.134

136

VLAl
oot o

) Elapsed Time: 35.740s

Clockticks: 126,124,189,186
Instructions Retired: 48,346,072,519
CPl Rate : 2.609

The CPI may be too high. This could be caused by issues such as memory stalls, instruction starvation, branch misprediction or long latency instructions.
Explore the other hardware-related metrics to identify what is causing high CPI.

MUX Reliability ®: 0.996
Front-End Bound : 0.7%
Bad Speculation “: 0.0%
) Back-End Bound : 87.3%

Identify slots where no uOps are delivered due to a lack of required resources for acc P|pel|ne Sta”s (because the data |S not arr|V|ng |n ‘t|me)

describe a portion of the pipeline where the out-of-order scheduler dispatches ready u0,
uOps get retired according to program order. Stalls due to data-cache misses or stalls dueto the overloaded divider unit are examples of back-end bound

issues.
() Memory Bound: 66.2%

The metric value is high. This can indicate that the significant fraction of execution pipeline slots could be stalled due to demand memory load and stores.
Use Memory Access analysis to have the metric breakdown by memory hierarchy, memory bandwidth information, correlation by memory objects.

() L1 Bound : 0.040

This metric shows how often machine was stalled without missing the L1 data cache. The L1 cache typically has the shortest latency. However, in certain
cases like loads blocked on older stores, a load might suffer a high latency even though it is being satisfied by the L1. Note that this metric value may be
highlighted due to DTLB Overhead or Cycles of 1 Port Utilized issues.

DTLB Overhead : 0.441

A significant proportion of cycles is being spent handling first-level data TLB misses. As with ordinary data caching, focus on improving data locality and
reducing working-set size to reduce DTLB overhead. Additionally, consider using profile-guided optimization (PGO) to collocate frequently-used data on the
same page. Try using larger page sizes for large amounts of frequently-used data.

Loads Blocked by Store Forwarding ?: 0.000

Lock Latency *: 0.000

Split Loads “: 0.000

4K Aliasing *: 0.002

L2 Bound *: 0.000
(>) L3 Bound : 0.000
() DRAM Bound “: 0.576

This metric shows how often CPU was stalled on the main memory (DRAM). Caching typically improves the latency and increases performance.

Memory Bandwidth ~: 0.787

This metric represents a fraction of cycles during which an application could be stalled due to approaching bandwidth limits of the main memory (DRAM).
This metric does not aggregate requests from other threads/cores/sockets (see Uncore counters for that). Consider improving data locality in NUMA multi-
socket systems.

© Memory Latency 0.190
This metric represents a fraction of cycles during which an application could be stalled due to the latency of the main memory (DRAM). This metric does not
aggregate requests from other threads/cores/sockets (see Uncore counters for that). Consider optimizing data layout or using Software Prefetches
(through the compiler).

Local DRAM “: 1.000

The number of CPU stalls on loads from the local memory exceeds the threshold. Consider caching data to improve the latency and increase the
performance.

Remote DRAM ™: 0.000

Remote Cache ~: 0.000

(>) Store Bound : 0.134

137

VLAl
oot o

) Elapsed Time: 35.740s

Clockticks: 126,124,189,186
Instructions Retired: 48,346,072,519
CPl Rate : 2.609

The CPI may be too high. This could be caused by issues such as memory stalls, instruction starvation, branch misprediction or long latency instructions.
Explore the other hardware-related metrics to identify what is causing high CPI.

MUX Reliability ®: 0.996
() Front-End Bound : 0.7%
(>) Bad Speculation 0.0%
) Back-End Bound ": 87.3%

Identify slots where no uOps are delivered due to a lack of required resources for accepting more uOps in the back-end of the pipeline. Back-end metrics
describe a portion of the pipeline where the out-of-order scheduler dispatches ready uOps into their respective execution units, and, once completed, these
uOps get retired according to program order. Stalls due to data-cache misses or stalls due to the overloaded divider unit are examples of back-end bound

issues.
() Memory Bound: 66.2%

: G .) , Our program is memory bound
The metric value is high. This can indicate that the significant fraction of execution

Use Memory Access analysis to have the metric breakdown by memory hierarchy, memory bandwidth information, correlation by memory objects.

() L1 Bound : 0.040
This metric shows how often machine was stalled without missing the L1 data cache. The L1 cache typically has the shortest latency. However, in certain
cases like loads blocked on older stores, a load might suffer a high latency even though it is being satisfied by the L1. Note that this metric value may be
highlighted due to DTLB Overhead or Cycles of 1 Port Utilized issues.

DTLB Overhead : 0.441

A significant proportion of cycles is being spent handling first-level data TLB misses. As with ordinary data caching, focus on improving data locality and
reducing working-set size to reduce DTLB overhead. Additionally, consider using profile-guided optimization (PGO) to collocate frequently-used data on the
same page. Try using larger page sizes for large amounts of frequently-used data.

Loads Blocked by Store Forwarding ?: 0.000

Lock Latency *: 0.000

Split Loads “: 0.000

4K Aliasing *: 0.002

L2 Bound *: 0.000
(>) L3 Bound : 0.000
() DRAM Bound “: 0.576

This metric shows how often CPU was stalled on the main memory (DRAM). Caching typically improves the latency and increases performance.

Memory Bandwidth ~: 0.787

This metric represents a fraction of cycles during which an application could be stalled due to approaching bandwidth limits of the main memory (DRAM).
This metric does not aggregate requests from other threads/cores/sockets (see Uncore counters for that). Consider improving data locality in NUMA multi-
socket systems.

© Memory Latency 0.190
This metric represents a fraction of cycles during which an application could be stalled due to the latency of the main memory (DRAM). This metric does not
aggregate requests from other threads/cores/sockets (see Uncore counters for that). Consider optimizing data layout or using Software Prefetches
(through the compiler).

Local DRAM “: 1.000

The number of CPU stalls on loads from the local memory exceeds the threshold. Consider caching data to improve the latency and increase the
performance.

Remote DRAM ™: 0.000

Remote Cache ~: 0.000

(>) Store Bound : 0.134

138

VLAl
oot o

) Elapsed Time: 35.740s

Clockticks: 126,124,189,186
Instructions Retired: 48,346,072,519
CPl Rate : 2.609

The CPI may be too high. This could be caused by issues such as memory stalls, instruction starvation, branch misprediction or long latency instructions.
Explore the other hardware-related metrics to identify what is causing high CPI.

MUX Reliability ®: 0.996
() Front-End Bound : 0.7%
(>) Bad Speculation 0.0%
) Back-End Bound ": 87.3%

Identify slots where no uOps are delivered due to a lack of required resources for accepting more uOps in the back-end of the pipeline. Back-end metrics
describe a portion of the pipeline where the out-of-order scheduler dispatches ready uOps into their respective execution units, and, once completed, these
uOps get retired according to program order. Stalls due to data-cache misses or stalls due to the overloaded divider unit are examples of back-end bound

issues.
() Memory Bound: 66.2%

The metric value is high. This can indicate that the significant fraction of execution pipeline slots could be stalled due to demand memory load and stores.
Use Memory Access analysis to have the metric breakdown by memory hierarchy, memory bandwidth information, correlation by memory objects.

() L1 Bound : 0.040
This metric shows how often machine was stalled without missing the L1 data cache. The L1 cache typically has the shortest latency. However, in certain
cases like loads blocked on older stores, a load might suffer a high latency even though it is being satisfied by the L1. Note that this metric value may be
highlighted due to DTLB Overhead or Cycles of 1 Port Utilized issues.
DTLB Overhead : 0.441

A significant proportion of cycles is being spent handling first-level data TLB misses. As with ordinary data caching, focus on improving data locality and
reducing working-set size to reduce DTLB overhead. Additionally, consider using profile-guided optimization (PGO) to collocate frequently-used data on the
same page. Try using larger page sizes for large amounts of frequently-used data.

Loads Blocked by Store Forwarding ?: 0.000
Lock Latency - 0.000
Split Loads “: 0.000
4K Aliasing *: 0.002
L2 Bound *: 0.000
® : . .
 omam Bousd®: e Our program is memory bound

This metric shows how often CPU was stalled on the main memory (DRAM). Cachl

Memory Bandwidth ~: 0.787

This metric represents a fraction of cycles during which an application could be stalled due to approaching bandwidth limits of the main memory (DRAM).
This metric does not aggregate requests from other threads/cores/sockets (see Uncore counters for that). Consider improving data locality in NUMA multi-
socket systems.

© Memory Latency 0.190
This metric represents a fraction of cycles during which an application could be stalled due to the latency of the main memory (DRAM). This metric does not
aggregate requests from other threads/cores/sockets (see Uncore counters for that). Consider optimizing data layout or using Software Prefetches
(through the compiler).

Local DRAM “: 1.000

The number of CPU stalls on loads from the local memory exceeds the threshold. Consider caching data to improve the latency and increase the
performance.

Remote DRAM ™: 0.000

Remote Cache ~: 0.000

(>) Store Bound : 0.134

139

VLAl
oot o

) Elapsed Time: 35.740s

Clockticks: 126,124,189,186
Instructions Retired: 48,346,072,519
CPl Rate : 2.609

The CPI may be too high. This could be caused by issues such as memory stalls, instruction starvation, branch misprediction or long latency instructions.
Explore the other hardware-related metrics to identify what is causing high CPI.

MUX Reliability ®: 0.996
() Front-End Bound : 0.7%
(>) Bad Speculation 0.0%
) Back-End Bound ": 87.3%

Identify slots where no uOps are delivered due to a lack of required resources for accepting more uOps in the back-end of the pipeline. Back-end metrics
describe a portion of the pipeline where the out-of-order scheduler dispatches ready uOps into their respective execution units, and, once completed, these
uOps get retired according to program order. Stalls due to data-cache misses or stalls due to the overloaded divider unit are examples of back-end bound

issues.
() Memory Bound: 66.2%

The metric value is high. This can indicate that the significant fraction of execution pipeline slots could be stalled due to demand memory load and stores.
Use Memory Access analysis to have the metric breakdown by memory hierarchy, memory bandwidth information, correlation by memory objects.

() L1 Bound : 0.040
This metric shows how often machine was stalled without missing the L1 data cache. The L1 cache typically has the shortest latency. However, in certain
cases like loads blocked on older stores, a load might suffer a high latency even though it is being satisfied by the L1. Note that this metric value may be
highlighted due to DTLB Overhead or Cycles of 1 Port Utilized issues.
DTLB Overhead : 0.441

A significant proportion of cycles is being spent handling first-level data TLB misses. As with ordinary data caching, focus on improving data locality and
reducing working-set size to reduce DTLB overhead. Additionally, consider using profile-guided optimization (PGO) to collocate frequently-used data on the
same page. Try using larger page sizes for large amounts of frequently-used data.

Loads Blocked by Store Forwarding ?: 0.000

Lock Latency *: 0.000

Split Loads “: 0.000

4K Aliasing *: 0.002

L2 Bound *: 0.000
(>) L3 Bound : 0.000
() DRAM Bound “: 0.576

This metric shows how often CPU was stalled on the main memory (DRAM). Caching typically improves the latency and increases performance.

Memory Bandwidth 0.787
This metric represents a fraction of cycles during which an application
This metric does not aggregate requests from other threads/cores/sockets (|
socket systems.

Bandwidth saturates fast because we move an entire
cache line for almost every data item

© Memory Latency 0.190
This metric represents a fraction of cycles during which an application could be stalled due to the latency of the main memory (DRAM). This metric does not
aggregate requests from other threads/cores/sockets (see Uncore counters for that). Consider optimizing data layout or using Software Prefetches
(through the compiler).

Local DRAM “: 1.000

The number of CPU stalls on loads from the local memory exceeds the threshold. Consider caching data to improve the latency and increase the
performance.

Remote DRAM ™: 0.000

Remote Cache ~: 0.000

(>) Store Bound : 0.134

140

(>) Store Bound
() Core Bound : 21.1%
This metric represents how much Core non-memory issues were of a bottleneck. Shortage in hardware compute resources, or dependencies software's
instructions are both categorized under Core Bound. Hence it may indicate the machine ran out of an OOO resources, certain execution units are
overloaded or dependencies in program's data- or instruction- flow are limiting the performance (e.g. FP-chained long-latency arithmetic operations).

Cycles of 0 Ports Utilized 0.627
This metric represents cycles fraction CPU executed no uops on any execution port.
Cycles of 1 Port Utilized - 0.132
Cycles of 2 Ports Utilized 0.089
() Cycles of 3+ Ports Utilized “: 0.068
() Retiring": 12.0%
Total Thread Count: 2
Paused Time - 0s

Divider ~: 0.099

This metric represents a fraction of cycles during which an application was stalled due to Core non-divider-related issues. For example, heavy
data-dependency between nearby instructions, or a sequence of instructions that overloads specific ports. Hint: Loop Vectorization - most compilers
feature auto-Vectorization options today - reduces pressure on the execution ports as multiple elements are calculated with same uop.

) Port Utilization : 0.373

(v) CPU Usage Histogram

This histogram displays a percentage of the wall time the specific number of CPUs were running simultaneously. Spin and Overhead time adds to the Idle CPU usage value.

40s

30s

20s

10s 4

0s -

Elapsed Time

Q|

Idle

Poor

10

Simultaneously Utilized Logical CPUs

12

Ok

14

141

16

(>) Store Bound : 0.134
() Core Bound : 21.1%

This metric represents how much Core non-memory issues were of a bottleneck. Shortage in hardware compute resources, or dependencies software's
instructions are both categorized under Core Bound. Hence it may indicate the machine ran out of an OOO resources, certain execution units are
overloaded or dependencies in program's data- or instruction- flow are limiting the performance (e.g. FP-chained long-latency arithmetic operations).

Divider ~: 0.099

(~) Port Utilization : 0.373
This metric represents a fraction of cycles during which an application was stalled due to Core non-divider-related issues. For example, heavy
data-dependency between nearby instructions, or a sequence of instructions that overloads specific ports. Hint: Loop Vectorization - most compilers
feature auto-Vectorization options today - reduces pressure on the execution ports as multiple elements are calculated with same uop.

Cycles of 0 Ports Utilized 0.627
This metric represents cycles fraction CPU executed no uops on any execution port.
Cycles of 1 Port Utilized - 0.132
Cycles of 2 Ports Utilized - 0.089
() Cycles of 3+ Ports Utilized “: 0.068
(>) Retiring 'z 12.0%
Total Thread Count: 2
Paused Time - 0s

(v) CPU Usage Histogram

This histogram displays a percentage of the wall time the specific number of CPUs were running simultaneously. Spin and Overhead time adds to the Idle CPU usage value.

4054 o |
£ =
E
o
30s4 &
&
20s
Los. :i Only one of 20 cores were use (no OpenMP paralellization)
0s - T T T T T T T T
0 2 4 6 8 10 12 14 16

Idle Poor llllllllllllllllllllllI3Blllllllllllllllllllll!!ll
0

Simultaneously Utilized Logical CPUs 142

(>) Store Bound
() Core Bound : 21.1%
This metric represents how much Core non-memory issues were of a bottleneck. Shortage in hardware compute resources, or dependencies software's
instructions are both categorized under Core Bound. Hence it may indicate the machine ran out of an OOO resources, certain execution units are
overloaded or dependencies in program's data- or instruction- flow are limiting the performance (e.g. FP-chained long-latency arithmetic operations).

Cycles of 0 Ports Utilized 0.627
This metric represents cycles fraction CPU executed no uops on any execution port.
Cycles of 1 Port Utilized - 0.132
Cycles of 2 Ports Utilized 0.089
() Cycles of 3+ Ports Utilized “: 0.068
() Retiring": 12.0%
Total Thread Count: 2
Paused Time - 0s

Divider ~: 0.099

This metric represents a fraction of cycles during which an application was stalled due to Core non-divider-related issues. For example, heavy
data-dependency between nearby instructions, or a sequence of instructions that overloads specific ports. Hint: Loop Vectorization - most compilers
feature auto-Vectorization options today - reduces pressure on the execution ports as multiple elements are calculated with same uop.

) Port Utilization : 0.373

(v) CPU Usage Histogram

This histogram displays a percentage of the wall time the specific number of CPUs were running simultaneously. Spin and Overhead time adds to the Idle CPU usage value.

40s

30s

20s

10s 4

0s -

Elapsed Time

Q|

Idle

Poor

10

Simultaneously Utilized Logical CPUs

12

Ok

14

143

16

. Advisor is profiler

- Analyzes your code on a per statement basis
. Looks at the assembly code to analyze vectorization
- Hints to the location of the problem

.- Vtune Amplifier accumulates statistics on hardware
events such as expensive instructions, vector
instructions, cache misses, ...

. Statistics accumulated on a per subprogram (function,
subroutine) basis, not per statement

. Hints to the nature of the problem
. Both are complementary

144

. Compiler does good job at producing vectorized
code

. Advisor will tell you if and why the compiler is
sometimes not able to produce vectorized code,
and will suggest solutions

. Advisor tells you which parts of your code consume
the most cputime and are candidates for
optimization

145

What have we learned so far

. Most often performance problems on modern cpus
are due to memory access problems (DRAM latency
hits you)

. VTune amplifier gives you clues on how and where
to fixes the issues
. CPI and Cache Misses

. Optimize
1.If there are cache misses, try to reduce them

- Easier said than done (we’ll come to that in the next section)
2.If you are memory bound and CPI is high,
1. Verify vectorization

2.Increase the computational complexity (do more useful work on
the data while it is in cache)

146

. Suppose we have 10° atoms

. Computing all interactions in single precision
- 10°(10°-1)/2 ~ 0.5 1018
. complexity 0(N?)- not a good idea
- Adding 1 atom increases the work by a factor N = 10°
- Adding 2 atoms increases the work by a factor N - N = 1018

- Lennard-Jones is short range
- lim 4mr? Vy;(r) = 0

T —00

- In practice cut-off r, = 2.5

147

[odd
sy

forces = 0
do 1i=1,N
do j=1,N-1

r2 = squared_distance(i,j)
if r2<rcutoff2
force_ij = 1jforce(r2)
force(i) = force(i) + force_ij
force(j) = force(j) - force_ij
endif
enddo
enddo
integrate forces to update atom positions

- Stillo(N%) ®
« Might be ok for small N

148

- Verlet lists

- Verlet list of atom i is list of all atoms
j for which j<li and Tij <71

- Increase cutoff slightly so that we do
not have to update the Verlet lists at
every timestep (depending on how
vigorously the atoms move)

. Verlet list construction is amortized

. Construction of Verlet lists is still 0(N%)®

. Is dominant data structure: typically between 50
and 100 neighbour atoms/atom

149

Implementing cut-off

. Put atoms in cells of width . : O(N)©
- Only atoms in neigbouring cells can satisfy r;; <7

. Because of symmetry only half
of the neighbouring cells must
be examined

. Construct Verlet lists as follows

.- Loop over all cells [O(N)]

- Loop over all neighbours of the
current cell using the neighbour

stencil ' [0(1)]
. Construct the Verlet list of all
atoms in the current cell [0(1)]

- Now our MD algorithm is O(N)©

150

. Put atoms in cells of width . : O(N)©
- Only atoms in neigbouring cells can satisfy r;; <7

. Because of symmetry only half

of the neighbouring cells must
be examined

. Construct Verlet lists as follows

.- Loop over all cells [O(N)]

- Loop over all neighbours of the
current cell using the neighbour

stencil ' [0(1)]
. Construct the Verlet list of all
atoms in the current cell [0(1)]

- Now our MD algorithm is O(N)©

151

. Atoms movel!

. Iterating over the Verlet lists to compute the

interactions will soon jump randomly through
memory

. Performance evolves naturally to the random
access case

. Fix data access pattern using spatial sorting

. Spatial sort = ensure that atoms which are close in
space are also close in memory

. This reduces cache misses

152

Fixing the data access pattern

. Space filling curve 213 || [
. Linearize a space of 114 un o |t
dimension >1 | s
. Hilbert curve {%‘iﬁ o EEeeeEce
. Hilbert index: ol e
coordinate of a cell qﬁ
:

along the Hilbert curve

. Locality guarantee:
points close in space
are also close along
the space filling curve
(on average)

Fixing the data access pattern

Sort atom property arrays (rx,ry,rz,vx,vy,vz,...) based on

the Hilbert index h of the cell of the atoms (spatial sort).

Atoms which are close in space (and hence will interact) will be close in memory
(and hence will be in the cache with high probability)

QU A W

Build a table containing the index of the first atom in each
cell, and the number of atoms in the cell (Hilbert list)

Build Verlet list from the Hilbert list (discard the latter)
Compute the interactions by looping over the Verlet list
Integrate forces, updating velocities and positions and time

If need to rebuild verlet list is true
jump back to step 1.

else
continue at step 4.

Fixing the data access pattern

1. Sort atom property arrays (rx,ry,rz,vXx,vy,vz,...) based on

the Hilbert index h of the cell of the atoms (spatial sort).

Atoms which are close in space (and hence will interact) will be close in memory
(and hence will be in the cache with high probability)

2. Build a table containing the index of the first atom in each
cell, and the number of atoms in the cell (Hilbert list)

3. Build Verlet list from the Hilbert list (discard the latter)
— 4., Compute the interactions by looping over the Verlet list
5. Integrate forces, updating velocities and positions and time

6. If need _to _rebuild_verlet_list is true
jump back to step 1.
else
continue at step 4.

- We need to
- Compute Hilbert indices

- Sort atom property arrays
- Build Hilbert list and Verlet list

. Fixing data access patterns can be a lot of work

Implementation in Fortran? C? C++?

Arguments

- C++ is inefficient
- Modern compilers good enough to generate efficient code
- After all your are using the same hardware

157

Implementation in Fortran? C? C++?

e etrereme—] (e #1]

- Modern compilers good enough to generate efficient code
- After all your are using the same hardware

158

Implementation in Fortran? C? C++?

Arguments
. C+ 4 is inefficient ” Lie #1 ‘
- Modern compilers good enough to generate efficient code
- After all your are using the same hardware
- Fortran is efficient

159

Implementation in Fortran? C? C++?

Arguments H o 1 ‘

- Modern compilers good enough to generate efficient code

- After all your are usin . ardware
W Lie #2

- Also fortran has constructs that sometimes come in handy, but can Kill
performance
. But C++ has quite a bit more features which can kill performance
than Fortran
- Because C++ is a general purpose language and Fortran is meant for
scientific computing
. Yet these features can be extremely useful if you use them wisely

- For computational kernels where performance is an issue you generally
need to stay close to the C subset and far away from the C++ features
such as classes, inheritance, virtual functions, etc. (templates are an

exception)

160

Implementation in Fortran? C? C++?

Arguments H o 1 ‘

- Modern compilers good enough to generate efficient code

- After all your are usin . ardware
W Lie #2

- Also fortran has constructs that sometimes come in handy, but can Kill
performance
. But C++ has quite a bit more features which can kill performance
than Fortran
- Because C++ is a general purpose language and Fortran is meant for
scientific computing
. Yet these features can be extremely useful if you use them wisely

- For computational kernels where performance is an issue you generally
need to stay close to the C subset and far away from the C++ features
such as classes, inheritance, virtual functions, etc. (templates are an

exception)

161

gou

- I'll use C++ because I know it better

162

gou

- Pluse C++4+ because I know it better
H Most often a lie too! ‘

163

Intermezzo

Choosing a programming language

-X-H—ersee—l—beea-uﬁe-l—k-new—%bet-teh” Most often a lie too!

- Unless you have read and understood all the C++ books by Scott
Meyers, Herb Sutter, Andrei Alexandrescu, Nicolai Josuttis

- In which case you probably also understand which C++ features
can kill performance and when they should be used to your
advantage

.- For number-crunching I find myself advancing faster using Fortran
than using C++ (which I do know better!)

ffective STL More Effective C++ Effective (++
35 New Ways
10 Impeove Yole

50 Specific Wil 10/ 1m Thind Riditione
S0 seeciic 4R 'mw Third Erlitigese

Effectivg)
Modern C++

More Exceptional C++

C++ Templates
The Complete Guide 0 New Enerceriong Pries. Progyomming
ottt oo Soke

164

Intermezzo
e sz

Choosing a programming language

I'll use C++ because it is better documented “ Not a lie ‘

- There aren’t too many books on Fortran like the above ones on
C++

- There is no website of the same quality as cplusplus.com or
cppreference.com for Fortran (imho)

. But still it is much harder to learn and to learn to use efficiently
- Not a valid argument

MLOAT e i £ 2 BTt L S

NORMAN S. CLERMAN * WALTER SPECTOR

Numerical Computing

with Modern Fortran o AN MOdern

STYLE AND USAGE

Richard J. Hanson
Tim Hopkins

165

. I'll use C because that is the language in
which Python was written and I want too
integrate my code with Python Good point!

- Python integration leverages your code with

- A high level programming interface:

- Providing initial data for your simulation is much easier and flexible
through a Python script than having to parse input files...

- Compose and customize high level solution schemes with ease (e.g.
choosing another solver for a subproblem)

- Hundreds of very useful open source Python libraries: Numpy,
Scipy, Pandas, matplotlib, ...

- But ...

166

VLAl
a5 o

. I'll use C because that is the language in which
Python was written and I want too integrate my
code with Python [continued]

. But the easiest way to create your own module that can be
imported in Python is through f2py
- Automatically turns your Fortran code into a Python module
- As simple as
- F2py —c mysource.f90 —m myPythonModule

- Automatically integrates with Numpy! Pass Numpy arrays to
your own Fortran library with no effort and no copying of data!

- Much harder in C

- Also feasible in C++ with the help of boost.python and
boost.multi_array, easier than C but not as easy as f2py

". stick to Fortran

167

Intermezzo

@ntﬂ

- Choosing a programming language

. I'll use C/C++ because I don’t want

to mess with storage orders

. Fortran uses row-major ordering indices start at 1

. C/C++ use column-major ordering indices start at 0

- Plenty of ways to mess up!

- Inadvertent copying of the array when passing to fortran!

- Trivial for 1D arrays (but mind the indexing)

- Numpy arrays by default use the C convention, but arrays can be
easily made to follow the Fortran convention:
- A=numpy.empty((2,2), dtype=np.float32, order=‘F’)

- A little bit of experimentation will take away the confusion

. Simplest way to avoid problems:
- If you use fortran modules adhere to fortran convention in numpy arrays
. If you use C/C++ modules adhere to C/C++ convention in humpy arrays
- If you use both pay attention..

“ Good point! ‘

168

Intermezzo

@ntﬂ

- Choosing a programming language

. I'll use X because I need to use some library Y that

Is written in X

. Point taken, often the easiest way

- Valid argument for libraries that deal with parallelization
issues:
- TBB, for shared memory parallelization (C++)
. Libraries abstracting vector instructions V¢, boost.simd (C++)

- However, there is a lot of support for mixed language
programming

. If you do not master X you might end up writing inefficient
code and loosing the advantage of using Y

- it may be worthwhile to find out how to tackle the mixed
language challenge

. Once done, you will proceed faster and write efficient code

169

. Stick to Fortran (unless you are a seasoned C++
programmer)

. Using Python and Numpy for high level
programming and Fortran (C++) for your own
number-crunching routines is a very practical
approach

. Use f2py to turn your fortran routines into a Python module
that is compatible with Numpy

170

. Details of Python+Numpy+Fortran/C++ is topic of
another talk

. Including shared memory parallelism (multi-
threading) and distributed memory parallelism

(multi-node)

171

_

Organizing the computations)
Python
Initialization, construct Verlet lists, control experiment, testing, ...
Store atom data in Numpy arrays)

a2

a

Python module
“import pyMDFortran”

f2py (Numpy) |
(Computational kerneI\
Fortran
MD stuff

LJ potential, force,
loop over verlet list
N _J

Python module
“import pyHilbertCpp”

a2

C++,
boost.python,

boost.multi_array

[Hilbert curve h

C++

[i,j,k] <->h
J 172

.- Take derivative of (Lennard-Jones) potential with

respect to interatomic distance vector = force
exerted on the atoms

dv(r) _ avy(r?)dr?
ar dr?2 dr
- Loop overi

- Loop overj € VL;
- _ 2\ >
- d; += f(r5)7

- dj == f(r{)1
- 3 x load (7})

- 3 X load (a;)

- 3 X store (d;)

dV2 (T'

dr?2

) 27 =f(rH)7

173

. Baseline case:

- N atoms
. Compute interaction forces of atom 0 with all other atoms

. Contiguous memory access
- Bandwidth saturated

174

cputime [s]

25

20

=
(9}

=
o

log2(memory used [kB])

— L1

— L2

e—e contiguous access
&—Q—HM
5 10 15 20

25

175

cputime [s]

25

20

=
(9}

=
o

—
— L2
e—e contiguous access
Baseline
B -.——././. 7]
-.—O—O-J"’_*
0 10 15 20

log2(memory used [kB])

25

176

cpu time [s]

25

20

15

L1
L2
L3
contiguous SoA
contiguous AoS
random access
random -xHost

log2(mem used [kB])

15

25

cputime [s]

25

20

15

MD

L1
L2
L3
contiguous access

!

././‘W

5 10 15
log2(memory used [kB])

25

177

cpu time [s]

25

20

15

L1
L2
L3
contiguous SoA
contiguous AoS
random access
random -xHost

MC:

450 106 inte

ractions/s

15 20

log2(mem used [kB])

25

cputime [s]

25

20

15

MD

L1
L2
L3
contiguous access

!

././‘W

5 10 15
log2(memory used [kB])

25

178

cpu time [s]

25

20

15

L1
L2
L3
contiguous SoA
contiguous AoS
random access

e—e random -xHost
MC:{450 106 ini%ractionsls
H—m{:’\: V-0 0
5 1|0 115 ZIO

log2(mem used [kB])

25

cputime [s]

25

20

15

MD

L1
L2
L3
contiguous access

MD: (90 10¢ interactions/s
oo 00 0 0@ 3/./"/"'/'_“_"——././‘ |
5 1b 1'5 ZIO

log2(memory used [kB])

25

179

MC MD

25

L1 L1
L2 L2

L3 L3

contiguous SoA contiguous access
contiguous AoS
random access
random -xHost

20 + 20 b

DI

ISSONNN

15+ 15 |

cpu time [s]
cputime [s]

MC: 450 106 ini%ractionsls MD:|90 10°¢ interactions/s

r+/ 1 5h ‘-“MW—

0 5 1|0 15 20 25 0 5 10 15 20 25
log2(mem used [kB]) log2(memory used [kB])

In terms of interactions/s MD is about 5 times slower than MC

A bit more instructions per interaction, but MC is memory bound, that
should not matter

« 3 times more memory access

» With a read:write ratio of 2:1 the bandwidth drops from 11 GB/s to 9.5 GB/s
« 3x11/9.5 = 3.47

« Still factor 1.44 slower than expected 180

. Three cases:

1. Atoms on FCC lattice

2. Permute the atoms (=random memory access)
3. Spatial sort by hilbert index

. Every experiment build the Verlet list and
computes the interactions

. CPUtime is measured only for computing the
interactions

. Plot result relative to baseline
- 90 10° interactions/s

181

. Put atoms on FCC lattice

.- 4 atoms per unit cell

. Closest neighbor
distance = L] r,;,

* Teutoff = 3 min

182

183

184

185

1 ! 1 !

L1
L2
L3
case 1 (FCC regular)

w FSN w

cputime relative to baseline

N

6 8 10

Close to baseline

R U AT S B

log2(memory used [kB])

cputime relative to baseline

N

DI

w

L1
L2
L3

case 1 (FCC regular)
case 2 (FCC permuted)

8 10 12 14

log2(memory used [kB])

191

cputime relative to baseline

N

DI

w

L1

L2

L3

case 1 (FCC regular)
case 2 (FCC permuted)

Due to diffusion this
- becomes the real
case pretty soon!

2 4 6 8 10 12 14

log2(memory used [kB])

192

cputime relative to baseline

N

It

w

L1

L2

L3

case 1 (FCC regular)
case 2 (FCC permuted)
case 3 (spatial sort)

log2(memory used [kB])

193

cputime relative to baseline

N

It

w

L1

L2

L3

case 1 (FCC regular)
case 2 (FCC permuted)
case 3 (spatial sort)

We are back on
the baseline!

log2(memory used [kB])

194

cputime relative to baseline

N

It

w

L1

L2

L3

case 1 (FCC regular)
case 2 (FCC permuted)
case 3 (spatial sort)

We are back on
the baseline!

log2(memory used [kB])

Improved
performance
at large N

195

case 2 (FCC permuted)
case 3 (spatial sort)

— L1

7H — L2 _
— L3

61| @@ case 1 (FCC regular) _
*—o
o—0

w
T

We are back on Improved
the baseline! performance
3r R at large N

cputime relative to baseline
=N
I
1

N
T
]

./‘/‘\'/.—.-\ <
1 _o—o—o--o—FO:':—o—o—o—'—o——o—o—éa—c—ﬂ/: |

Spatial sort is relatively expensive
but the timestep and displacements are small
Cost can be amortized over many timesteps

196

Fixing the data access pattern

— 1. Sort atom property arrays (rx,ry,rz,vx,vy,vz,...) based on

the Hilbert index h of the cell of the atoms (spatial sort).

Atoms which are close in space (and hence will interact) will be close in memory
(and hence will be in the cache with high probability)

2. Build a table containing the index of the first atom in each
cell, and the number of atoms in the cell (Hilbert list)

3. Build Verlet list from the Hilbert list (discard the latter)

4. Compute the interactions by looping over the Verlet list and
measure the performance (e.g. interactions/s)

5. Integrate forces, updating velocities and positions and time

6. If performance degrades
jump back to step 1.
else
continue at step 4.

Fixing the data access pattern

1. Sort atom property arrays (rx,ry,rz,vXx,vy,vz,...) based on

the Hilbert index h of the cell of the atoms (spatial sort).

Atoms which are close in space (and hence will interact) will be close in memory
(and hence will be in the cache with high probability)

2. Build a table containing the index of the first atom in each
cell, and the number of atoms in the cell (Hilbert list)

3. Build Verlet list from the Hilbert list (discard the latter)

— 4., Compute the interactions by looping over the Verlet list and
measure the performance (e.g. interactions/s)

5. Integrate forces, updating velocities and positions and time

6. If performance degrades
jump back to step 1.

else
continue at step 4.

VLAl
oot o

atoms : 2,13 10°
pairs : 162 10°
Ratio : 76

Pairs computed per second : 88.6 10°

B/atom: 376,5 (320B is in the verlet list)
Bandwidth = 9,5 GB/s (measured by mic 2 reads : 1 write)
maximum atoms per second: 27.000.000

actual atoms per second: 1.160.000

ratio: 0,04

flops_per_pair : 27

flops_per_atom : 2055,5

gflops_per_second: 2,39

peak performance : 11,2

ratio : 0,21

199

atoms : 2,13 10°
pairs : 162 10°
Ratio : 76
Pairs computed per second : 88.6 10°

B/atom: 376,5
Bandwidth = 9,5 GB/s

maximum atoms per second:

actual atoms per second:
ratio:

flops_per_pair
flops_per_atom
gflops_per_second:
peak performance :
ratio :

(320B is in the verlet list)
(measured by mic 2 reads : 1 write)

27.000.000
1.160.000
0,04

27
2055,5
2,39
11,2
0,21

Not memory bound

Lot of flops per atom!

Not compute bound either!

200

Performance [GFlops/s]

12

10

oo

T

MD

| Il |

2 3 4
Computational Intensity [Flops/byte]

201

Performance [GFlops/s]

12

10

oo

T

MC

MD

| Il |

2 3 4
Computational Intensity [Flops/byte]

202

X userlantwerpen1201/v5620170/inte|/advixe/projec‘tsl pyMD - Intel Advisor

[ece
File View Help |

TNEEPI IR LY YT IS

Welcome | €000 3¢ I

& Where should | add vectorization and/or threading parallelism? e
Elapsed time: 55.75s [Vectorized| [\ Not Vectorized| [:"| FILTER: |All Module_~ | |All Sources "~ ||Loops "~ ||Al Threads -
@ summary %% Survey Report % Refinement Reports ¢ Annotation Report P
Function Call Sites and Loops & |Vector Issues Self Timew Total Time E Why No Vectorization?
= [loop in compute_interactions_verlet_linear at md.f90:328] [0 @2 Assumed dependency present 9.390s 9.390s mmm Scalar @ vector dependence prevents vectoriz
515 [loop in helper::VerletListBuilder::add_cell_cell] O 5.034s 5.034smm Scalar L,
| | 2l
Source ‘ Top Down Loop Analytics Loop Assembly ¥ Recommendations & Compiler Diagnostic Details
Line‘ Source [Total Time‘ % ‘ Loop ‘I1me| % l Traits 2]
317
call cpu_time(cpustart)
do iter=1,n_iter
j=1 17.900s @
do ia=1,n_atoms
ia_pairs = verlet_linear(j) 0.010s [
S| do k = j+1, j+ia_pairs 17.900s m
O [loop in compute_interactions_verlet_linear at md.f90:323]
Scalar loop. Not vectorized: vector dependence prevents vectorization
No loop transformations applied
ja = verlet_linear(k)+l ! +1 since fortran starts counting from 1 ! 0.280s [
dx = rx(ja)-rx(ia) 0.330s [
dy = ry(ja)-ry(ia) 0.320s [
dz = rz(ja)-rz(ia) 0.527s |
aij = 1j_force_factor2(dx**2 + dy**2 + dz**2) 9.729s m 17.850s m
! update particle ia acceleration
ax(ia) = ax(ia) + aij*dx 0.569s |
ay(ia) = ay(ia) + aij*dy 2.758s 11
az(ia) = az(ia) + aij*dz 1.360s |
! update particle ja acceleration
ax(ja) = ax(ja) - aij*dx 0.510s |
ay(ja) = ay(ja) - aij*dy 0.190s | J
az(ja) = az(ja) - aij*dz 0.688s |
Selected (Total Time): 0s ~|
[« | O || | IO p

203

gou
ol o

j=1
do ia=1,n_atoms
ia_pairs = verlet_linear(j) ! Size of the Verlet list of atom ia

do k = j+1,j+ia_pairs
ja = verlet_linear(k)+1 ! +1 since Fortran starts counting from 1 !
dx = rx(ja)-rx(ia)
dy = ry(ja)-ry(ia)
dz = rz(ja)-rz(ia)
aij = 1j_force_factor2(dx*xx2 + dy*x2 + dz*xx2)
I update particle ia acceleration
ax(ia) = ax(ia) + aij*dx
ay(ia) = ay(ia) + aijxdy
az(ia) = az(ia) + aij*dz
I update particle ja acceleration
ax(ja) = ax(ja) — aij=dx

ay(ja) = ay(ja) - aij=*dy
az(ja) = az(ja) - aij*dz
enddo
j =]+ 1+ ia_pairs

enddo
204

j=1
do ia=1,n_atoms
ia_pairs = verlet_linear(j) ! Size of the Verlet list of atom ia

do k = j+1,j+ia_pairs
ja = verlet_linear(k)+1 ! +1 since Fortran starts counting from 1 !
dx = rx(ja)-rx(ia)
dy ry(ja)-ry(ia)
dz = rz(ja)-rz(ia)
aij = 1j_force_factor2(dxxx2

« SIMD vectorization means that you
| update particle ia acceleratis update ax(aJ) fOI’.4 SUCCGSSIYe Ja
ax(ia) = ax(ia) + aijdx values (also ay(aj) and az(ja))

ay(ia) = ay(ia) + aijxdy » The compiler cannot know that the ja
az(ia) = az(ia) + aij*dz are different

! update particle ja acceleratic: Assumed dependenc
ax(ja) = ax(ja) - aij*dx , y ,
» We know that the ja are different by

ay(ja) = ay(ja) - aijxdy , .

az(ja) = az(ja) — aijdz construction of the Verlet list
enddo * We must tell the compiler to ignore
j =3+ 1+ 1a_pairs assumed dependencies

enddo
205

VLAl
a5 [g

j=1
do ia=1,n_atoms
ia_pairs = verlet_linear(j) ! Size of the Verlet list of atom ia
IDIR$ SIMD
do k = j+1,j+ia_pairs
ja = verlet_linear(k)+1 ! +1 since Fortran starts counting from 1 !
dx = rx(ja)-rx(ia)
dy ry(ja)-ry(ia)
dz = rz(ja)-rz(ia)
aij = lj_force_factor2(dx*x2 + dyxx2 + dz*x*x2)
| update particle ia acceleration
ax(ia) = ax(ia) + aij*dx
ay(ia) = ay(ia) + aijxdy
az(ia) = az(ia) + aijxdz
I update particle ja acceleration
ax(ja) = ax(ja) — aij=dx

Ignore assumed dependencies and vectorize the loop

ay(ja) = ay(ja) - aij=*dy
az(ja) = az(ja) - aij*dz
enddo
j =]+ 1+ ia_pairs

enddo
206

- “inserts present” = hint for gather/scatter

- Filling a vector register element per element
(in the case of non-contiguous elements)

. AVX (highest SIMD extension available on Hopper)
has no built-in support for gather/scatter

. AVX2 has special instructions for gather/scatter

. Available on BrENIAC
- Available on successor of Turing

207

j=1
do ia=1,n_atoms
ia_pairs =
IDIR$ SIMD

do k = j+1,j+ia_pairs

ja = verlet_linear(k)+1 ! +1 since Fortran starts counting from 1 !

verlet_linear(j)

dx = rx(ja)| - rx(ia)
dy = ry(ja)| - ry(ia)
dz = rz(ja) - rz(ia)
aij = lj_force_factor2(dx*x2 + dyxx2 + dz*x*x2)

| update
ax(ia)
ay(ia)
az(ia)
I update
ax(ja)
ay(ja)
az(ja)
enddo

j =]+ 1+ ia_pairs

enddo

particle

particle

ax(ia)
ay(ia)
az(ia)

ax(ja)
ay(ja)
az(ja)

ia acceleration

+ aijxdx
+ aij*dy
+ alj*dz

ja acceleration

— aijxdx
— ailj*dy
— alj*dz

I Size of the Verlet list of atom ia

Gather operation moving
rx(ja), ry(ja), rz(ja)
for 4 successive ja values
into the vector registers

Scatter operation moving
ax(ja),ay(ja), az(ja)

for 4 successive ja values
out of the vector registers.

. C=A+B

- No gather/scatter, 4 successive items moved as a block
into/out of vector registers

A

memory

209

. C=A+B

- No gather/scatter, 4 successive items moved as a block

into/out of vector registers

— A

Vector registers

memory

210

. C=A+B

- No gather/scatter, 4 successive items moved as a block

into/out of vector registers

— A

<
<
<

@

vadd

Vector registers

memory

211

. C=A+B

- No gather/scatter, 4 successive items moved as a block

into/out of vector registers

— A

<
<
<

vadd

Vector registers

memory

(@ @

212

. C=A+B

. No gather/scatter, 4 successive items moved as a block
into/out of vector registers

A

B

memory

213

. C=A+B

. No gather/scatter, 4 successive items moved as a block

into/out of vector registers

A

D
| =4

Vector registers

memory

214

- C=A+B

No gather/scatter, 4 successive items moved as a block
into/out of vector registers

A

D
| =4

— — Vector registers memory

vadd

<
<
<
<

@

215

. C=A+B

No gather/scatter, 4 successive items moved as a block

into/out of vector registers

A

D
| =4

<
<
<

@

vadd

Vector registers

memory

(¢))

216

. C=A+B

. gather/scatter, items moved one by one into/out of vector
registers

A

memory

217

- C=A+B
. gather/scatter, items moved one by one into/out of vector
registers

A

’

4

*

Vector registers

memory

218

. C=A+B

. gather/scatter, items moved one by one into/out of vector

registers

e $

4

———— ¢

A

il Vector registers

vadd

vV Vv VY

memory

(q))
Y
A 4
4
\ 4

219

. C=A+B

. gather/scatter, items moved one by one into/out of vector

registers

e $

4

———— ¢

A

il Vector registers

vadd

vV Vv VY

memory

(q))
Y
A 4
4
\ 4

220

- LLC misses 0.008 %
. L] force_ factor2 0.59 cpi
. Compute_interactions 0.77 cpi

. cpi at best 0.25
. cpi < 1 considered acceptable in HPC

.- There is still room for improvement
- No more low hanging fruit, though

221

. Assembly code
- Architecture dependent code
. Libraries for writing explicit vector code

. Architecture independent code
. C++ only

- V¢ (github.com/VcDevel/Vc)

- Boost.simd (github.com/NumScale/boost.simd)

. Similar performance

. Rewrite algorithm in terms of vector operations
rather than scalar operations

222

- Gain:
. 120-127 10° interactions per second (instead of 90 10°)
. 30% improvement
- Not bad, but not effortless (took me about 12 week)
- AVX2 will probably do even better

. Coding details in other talk

223

1. Data access pattern is crucial to performance

224

. Monte Carlo case (3N reads, no writes)

. Contiguous data access:

. 450 10° interactions/s

. Bandwidth saturation (machine limit)
. Random access:
. Performance drops by factor 15 (cache misses, gather/scatter)

e—e contiguous SoA
e—e contiguous Ao

cpu time [s]
G

10 15
log10(mem used [kB])

Computational intensity [flops/byte]

- Bandwidth saturation means that the CPU is waiting
for the data to arrive

. Try to do more computations with the data that is available,
e.g.:
- Additional computations
- A more complex model

- Program will not run faster but will do more work in the same
time

226

. Molecular dynamics case (6N reads, 3N writes + VL)

. Contiguous data access: e
. 90 1068 interactions/s ol| — E
- No machine limits hit 25102 random.
. gather/scatter [A

w
T

. Random access:

- Performance drops by factor 7 //,,/ / |

. Spatial sort fixes the problem == F et

0

cputime relative to baseli

N
T

2 4 6 8 10 12 14 16 18 20
log2(memory used [kB])

- Fixing the data access pattern is not always easy
. Involves usually some form of sorting the data

227

2. Spatial sort using space filling curves is
useful technique for fixing data access
patterns

228

3. Intel tools (Advisor, VTune) provide useful
clues to optimizing your code
Hot spots

The nature of hot spots (data access, expensive
instructions, ...)

Issues with vectorization

229

4. Fortran has many advantages for
programming number-crunching routines
F2py for producing python modules

230

Python/Numpy Fortran

verify code correctness - Lennard-Jones potential
generate FCC lattice - Lennard-Jones forces
generate arrays filled . iterate over Verlet list
with random numbers and compute
generate permutations Interactions
zero accelerations - iterate over array and
between time steps compute interactions

[build Verlet list ——— (baselines)

spatial sort of atom
property arrays
define coarse

C++
compute hilbert indices

—»| build Verlet list |

iterate over Verlet list
and compute inter-
actions using simd
libraries

computational strategy 'l ' I
and data structures Speedup of 1200x !
control and initialize

the experiments

plot results

code 80% code 10%
cputime 5% cputime 90%

10%
cputime 5%

231

5. Use a simple but relevant baseline that you
understand to judge the performance of your
code and direct your efforts

232

6. Be aware of the machine limits
Bandwidth
Peak performance
Roofline model

233

7. SIMD libraries are useful
Vc, Boost.simd

234

Thank you

You are always welcome to discuss your
(computational) problems

235

