
Code modernization
a practical approach

HPC-TNT-1.2 fall 2016

ANNIE CUYT☐ STEFAN BECUWE☐ FRANKY BACKELJAUW☐ KURT LUST☐ ENGELBERT TIJSKENS

• A practical approach
• To build efficient applications
• To understand performance issues

• To maximize code flexibility
• To minimize coding efforts

Goal

2

• Some computer architecture concepts related to performance and
machine limits
• Levels of parallelism → peak performance
• Memory on modern CPUs → bandwidth, latency

• Example1 [toy problem]
• Atomic system interacting through a Lennard-Jones potential
• Monte Carlo setting

• Example 2
• Atomic system interacting through Lennard-Jones potential
• Molecular dynamics setting

• Optimizing code ⇔ optimizing data access
• Spatial sorting using space filling curve

• Choosing a programming language

Overview

3

A little terminology
• A (compute) node in a cluster is basically a PC without all

the peripheral devices
• Nodes are connected through a fast network:

interconnect
• Every node has several sockets, each of which contains a

processor
• Every processor contains many cores
• Each core can simultaneously execute one task: thread
• Simultaneous multi-threading : more than one thread per core
• Usually switched off on clusters

• Thread executes a sequential stream of instructions

Levels of parallelism

4

Terminology

5

node1

node2

node3

node4

node5

node6

node

node

node

node

node

node

Interconnect
(Infiniband)

Terminology

6

node1

node2

node3

node4

node5

node6

node

node

node

node

node

node

Interconnect
(Infiniband)

Terminology

7

node1

node2

node3

node4

node5

node6

nodenode

node

node

node

node

node

Interconnect
(Infiniband)

Terminology

8

node1

node2

node3

node4

node5

node6

node

node

node

node

node

node

Interconnect
(Infiniband)

Terminology

9

node1

node2

node3

node4

node5

node6

Interconnect
(Infiniband)

Terminology

10

node1

node2

node3

node4

node5

node6

Interconnect
(Infiniband)

Terminology

11

node1

node2

node3

node4

node5

node6

Interconnect
(Infiniband)

Terminology

12

node1

node2

node3

node4

node5

node6

Hopper
• 168	nodes
• 2	sockets	x	E5-2680	v2
• 10	cores	per	CPU
• 20	cores	per	node
• 1	thread	per	core
• 3360	cores
• 3360	threadsInterconnect

(Infiniband)

1. Several nodes can cooperate on a task
• Distributed memory parallellization
• Nodes communicate information via interconnect
• Typically using MPI: Message Passing Interface

2. Several cores can cooperate on a task
• Shared memory parallellization
• Cores communicate information via memory
• Often using OpenMP, but also MPI, …

Levels of parallelism

13

3. A single core may exploit pipelining and
vectorisation to execute instructions in parallel

Levels of parallellism

14

• Instructions break down in micro-instructions
• Each micro-instruction uses a distinct part of the

hardware
1. Instruction fetch (IF)
2. Instruction Decode (ID)
3. Execution (EX)
4. Memory Read/Write (MEM)
5. Result Writeback (WB)

Pipelining

15[https://en.wikibooks.org/wiki/Microprocessor_Design/Pipelined_Processors]

Pipelining

16

Pipelining

17

5 instructions executing
simultaneously

Vectorization

18

Ai

+

Bi

=

Ci

Register 1

Register 2

Register 3

Vectorization

19

Ai

+

Bi

=

Ci

Load 2 operands in register
Execute 1 add instruction
Store 1 result

Register 1

Register 2

Register 3

Vectorization

20

Ai

Bi

Ci

Aj AlAk

Bj BlBk

Cj ClCk

Load 2x4 operands in register
Execute 1 vadd instruction
Store 1x4 results

Register 1

Register 2

Register 3

+vector

=vector

Vectorization

21

Ai

Bi

Ci

Aj AlAk

Bj BlBk

Cj ClCk

Load 2x4 operands in register
Execute 1 vadd instruction
Store 1x4 results

Register 1

Register 2

Register 3

Single Instruction
Multiple Data

(SIMD)

+vector

=vector

Vectorization

22

Ai

Bi

Ci

Aj AlAk

Bj BlBk

Cj ClCk

Load 2x4 operands in register
Execute 1 vadd instruction
Store 1x4 results

Register 1

Register 2

Register 3

Single Instruction
Multiple Data

(SIMD)

Potentially 4x
faster

[if the loads and
stores can be
executed fast

enough]

+vector

=vector

• Fused instructions: Fused Multiply-Add executes
y = a*x+b (in vector mode

in one cycle

• Vector register width on Hopper is 256 bits
• 8 single precision numbers
• 4 double precision numbers

Vectorization

23

• 3 levels of parallellism:
• Intra-core: pipelining and SIMD

• Multi-core: shared memory

• Multi-node: distributed memory

Levels of parallellism

24

• 3 levels of parallellism:
• Intra-core: pipelining and SIMD

• Multi-core: shared memory

• Multi-node: distributed memory

Levels of parallellism

25

• Who does the work?
• Compiler
• but it appreciates/needs

your help
• You and the compiler
• OpenMP = directives
• Relatively simple

• You only
• MPI
• Harder

1. Monte Carlo setting:
• compute the energy of configurations
• ensemble averages
• no (individual) forces, accelerations or velocities
• no time integration

2. Molecular Dynamics setting:
• compute the time evolution of a collection of atoms
• Individual forces, accelerations, velocities
• [time integration]

Case study – Lennard-Jones system

26

• Compute the potential energy of a system of 𝑁
atoms: ∑ 𝑉$% 𝑟'(�

'*(
• Doing this for all atoms is a 𝑂 𝑁, approach
• we do it only for a single atom just for the purpose of

illustrating the behavior of the hardware (toy problem)
• ∑ 𝑉$% 𝑟'(�

(

• Techniques to reduce to 𝑂 𝑁 will be discussed in
MD setting

• We will only consider single core performance
• That is the first thing to optimize anyway
• Already complex enough for a single lecture
• SIMD and pipelining are the only level of parallelism

MC experiment

27

Lennard-Jones interactions

• Lennard-Jones potential (neglecting constants)

Lennard-Jones potential
(sequential code)

double VLJ0(double r) {

return 1./pow(r,12) - 1./pow(r,6);

} // 18.0 x slower
double VLJ1(double r) {

return std::pow(r,-12) - std::pow(r,-6);

} // 14.9 x slower

double VLJ2(double r) {

double tmp = std::pow(r,-6);
return tmp*(tmp-1.0);

} // 7.8 x slower

double VLJ3(double r) {

double tmp = 1.0/(r*r*r*r*r*r);

return tmp*(tmp-1.0);
} // 1.01 x slower

double VLJ(Real_t r) {

double rr = 1./r;

rr *= rr;

double rr6 = rr*rr*rr;
return rr6*(rr6-1);

} // 1 x slower

Lennard-Jones potential

double VLJ(Real_t r) {

double rr = 1./r;

rr *= rr;
double rr6 = rr*rr*rr;

return rr6*(rr6-1);

} // 1 x slower

double VLJ(Real_t r2) {

double rr = 1./r2;
// rr *= rr;

double rr6 = rr*rr*rr;

return rr6*(rr6-1);

} // avoid one sqrt per function call (to compute the distance r)

Cost of instructions

• cheap instructions +,-,* ~1 cycle
• Rather expensive / ~10-20 cycles
• Expensive sqrt ~35 cycles
• Very expensive trigonometric/

logarithmic/
exponential functions ~100-200 cycles

• Things get better if pipelining can be exploited
• Relative cost remains

• x0, y0, z0 : coordinates of our central atom
• x1[1:m], y1[1:m], z1[1:m] : coordinates of m

neighbouring atoms
• Let m=512, 1012, …, 229~0.5*109

• surround by outer loop iterating 229/m times
• every m-case executes 229 evaluations of VLJ(r2)
• Variations
• Loop over all m neighbouring atoms contiguously
• Structure of arrays (SoA) : x x x ... y y y ... z z z ...
• Array of structures (AoS) : x y z ... x y z ... x y z ...

• Pick atoms in the arrays x1, y1, z1 with a random
permutation

MC experiment

32

integer :: m ! # of neighbour atoms
integer :: k ! # of iterations, m*k=cst, same amount of work per iteration
real(wp) :: x0,y0,z0, p(3*m)
! Contiguous access, SoA: p=[xxx…yyy…zzz…]
do ik=1,k

do im=1,m
r2 = (p(im)-x0)**2 +(p(m+im)-y0)**2 +(p(2*m+im)-z0)**2
v = v + lj_pot2(r2)

enddo
enddo

MC - Contiguous - SoA

33

1 x y z

2 x y z

3 x y z

integer :: m ! Number of neighbour atoms
real(wp) :: x0,y0,z0, p(3*m)
! ordered access, AoS: p=[xyzxyzxyz…]
do ik=1,k

do im=1,m
r2 = (p(im)-x0)**2 +(p(1+im)-y0)**2 +(p(2+im)-z0)**2
v = v + lj_pot2(r2)

enddo
enddo

MC - Contiguous - AoS

34

1 x y z

2 x y z

3 x y z

integer :: m ! Number of neighbour atoms
real(wp) :: x0,y0,z0, p(3*m)

integer :: j(m) ! random permutation of [1:m]

! random access
do ik=1,k

do im=1,m
r2 = (p(j(im))-x0)**2 +(p(j(im)+m)-y0)**2 +(p(j(im)+2*m)-z0)**2
v = v + lj_pot2(r2)

enddo
enddo

MC - Random access

35

1 x y z

2 x y z

3 x y z

Results

36

Results

37

Q1: What is
going on?

Results

38

Q2: is this the
best we can get?

• Which factors influence performance of a code?
• Machine limits

Performance

39

• ≝ Maximum # floating point operations per second

• For a single core the peak performance =
• 2*8 instructions per cycle in SP
• 2*4 instructions per cycle in DP
• The 2 comes from the fused multiply and add
• The 8, resp. 4 come from the vector register width

• Peak performance per node
• (1 cycle = 1/clock_frequency)
• Assuming 1 hardware thread per core:
• (#cores=20) * 2*8(SP) * (f=2.8Ghz) = 896 Gflop/s
• (#cores=20) * 2*4(DP) * (f=2.8Ghz) = 448 Gflop/s

Peak performance

40

• Peak performance is not the only limiting factor…
• It is not the most common limiting factor
• Instructions operate on data, ...
• Data resides in memory
• Accessing data takes time (and energy)
• Data has to be moved from memory to cpu register before it

can be processed
• Peak performance has increased much faster than

the speed at which data can be moved between
memory and cpu

Performance

41

• Memory bandwidth
• The maximum number of bytes that can be moved per

second between main memory and the cores
• Hopper
• 92-110 GB/s (varies depending on read:write ratio)

• Memory latency
• The number of cycles (or the time) needed to fetch a single

item from main memory
• Hopper
• ~180 cycles (within socket)
• ~350 cycles (across sockets)

Speed of moving data

42

• Code is compute bound if
• The cpu can execute its compute instructions without having

to wait for data
• The limit is the theoretical peak performance
• [Used to be the common case – not any more]

• Code is memory bound if
• A considerable amount of cycles is spent waiting for data
• Too much data requested:
• Bandwidth saturation = machine limit

• Too distant data requested:
• If data is not in the cache: latency penalty
• Latency problem = machine limit

• [most common situation]

Performance

43

Roofline model

Roofline model

Computational	intensity	𝐼. =	flops	per	Byte

Roofline model

Computational	intensity	𝐼. =	flops	per	Byte

Pe
rfo

rm
an
ce
	=
	fl
op

sp
er
	se

co
nd

Roofline model

Computational	intensity	𝐼. =	flops	per	Byte

Pe
rfo

rm
an
ce
	=
	fl
op

sp
er
	se

co
nd

peak	performance

Roofline model

Computational	intensity	𝐼. =	flops	per	Byte

Pe
rfo

rm
an
ce
	=
	fl
op

sp
er
	se

co
nd

peak	performance

Roofline model

Computational	intensity	𝐼. =	flops	per	Byte

Pe
rfo

rm
an
ce
	=
	fl
op

sp
er
	se

co
nd

peak	performance

Compute	bound

Roofline model

Computational	intensity	𝐼. =	flops	per	Byte

Pe
rfo

rm
an
ce
	=
	fl
op

sp
er
	se

co
nd

peak	performance

Memory	bound Compute	bound

Roofline model

Computational	intensity	𝐼. =	flops	per	Byte

Pe
rfo

rm
an
ce
	=
	fl
op

sp
er
	se

co
nd

peak	performance

Memory	bound Compute	bound

Running at peak performance
Bandwidth not saturated
Energy efficient computation
(Moving data costs more
energy than executing
instructions)

Roofline model

Computational	intensity	𝐼. =	flops	per	Byte

Pe
rfo

rm
an
ce
	=
	fl
op

sp
er
	se

co
nd

peak	performance

Memory	bound Compute	bound

Running at peak performance
Bandwidth not saturated
Energy efficient computation
(Moving data costs more
energy than executing
instructions)

Bandwidth saturated
Running below peak performance
Not energy efficient

Roofline model

Computational	intensity	𝐼. =	flops	per	Byte

Pe
rfo

rm
an
ce
	=
	fl
op

sp
er
	se

co
nd

peak	performance

Memory	bound Compute	bound

Sweet spot:
All resources optimally used:
Bandwidth saturated
Running at peak performance

Running at peak performance
Bandwidth not saturated
Energy efficient computation
(Moving data costs more
energy than executing
instructions)

Bandwidth saturated
Running below peak performance
Not energy efficient

Roofline model

Computational	intensity	𝐼. =	flops	per	Byte

Pe
rfo

rm
an
ce
	=
	fl
op

sp
er
	se

co
nd

peak	performance

Memory	bound Compute	bound

Sweet spot:
All resources optimally used:
Bandwidth saturated
Running at peak performance

Running at peak performance
Bandwidth not saturated
Energy efficient computation
(Moving data costs more
energy than executing
instructions)

Bandwidth saturated
Running below peak performance
Not energy efficient

Running below all
machine limits
• Mixture of compute

bound and memory
bound sections

• Cache misses
• Expensive instructions

Roofline model

Computational	intensity	𝐼. =	flops	per	Byte

Pe
rfo

rm
an
ce
	=
	fl
op

sp
er
	se

co
nd

peak	performance

Memory	bound Compute	bound

Sweet spot:
All resources optimally used:
Bandwidth saturated
Running at peak performance

Running at peak performance
Bandwidth not saturated
Energy efficient computation
(Moving data costs more
energy than executing
instructions)

Bandwidth saturated
Running below peak performance
Not energy efficient

Running below all
machine limits
• Mixture of compute

bound and memory
bound sections

• Cache misses
• Expensive instructions

Memory bound =
most common
situation

• Optimizing code was about organizing compute
instructions
• Pretty straightforward: less compute cycles is less cputime
• Algorithmic complexity was important guideline
• Optimizing code is optimizing data access
• To keep the processor busy doing useful stuff
• Algorithmic complexity is no longer a guarantee for

optimal performance
• E.g. linear search (as in a map) often faster than binary or other

search algorithms, also sorting
• For large N low order complexity wins, but hardware caching

takes an early lead

• Understanding how memory works is necessary
• Experimenting and measuring is necessary

Memory bound - consequences

56

Hierarchical memory organisation

57

Registers: ~1kB per core 0 cycles

L1 Cache: 32 kB per core ~1 cycles

L2 Cache: 256 kB per core ~10 cycles

L3 Cache: 25 MB per socket ~50 cycles

DRAM: 64-256 GB per node ~200 cycles

O
n-

ch
ip

 (E
5-

26
80

 v
2)

O
ff-

ch
ip

ALU memory
size speed

• Memory is not fetched on a per item basis
• But in chunks called cache lines
• typically 64 Bytes long
• 16 single precision items
• 8 double precision items

Memory organization

58

• Linear search of array A[i], i=1..n
• A[1] is not in cache, wait time before cache line is loaded,

dram latency (~200 cycles) and before item A[1] can be
examined
• Once the cache line is loaded, A[2..16] are also in L1 cache

and are ready to be examined without delay
• Hardware recognizes your loop over the array and keeps

loading next (or previous) cache lines into the L1 cache, so
that the delay is vanishing
• Depending on how much work it takes to examine each

item, as soon as item A[16], the next cache line A[17:32]
may have been loaded already or not
• In any case, the wait time is now less than the dram latency

(~200 cycles)
• The limitation becomes memory bandwidth of the machine

Memory organisation

59

• Binary search of array A[i], i=1..n
• A[n/2] is not in cache, wait time before cache line is loaded,

dram latency
• Next item needed is A[n/4] or A[3n/4], which is not in the

cache, dram latency hits you again
• In fact, the dram latency keeps on hitting you until the

search range is reduced to one or two cache lines,
• You do only one examination/dram latency, as opposed to

16/dram latency in linear search.

Memory organisation

60

• Instructions are also data stored in memory
• Branching instructions can cause cache misses too!
• Instruction cache misses
• Avoid unpredictable branches in loops

Memory organization

61

• code::dive conference 2014 - Scott Meyers: Cpu
Caches and Why You Care
• https://www.youtube.com/watch?v=WDIkqP4JbkE

Need more insight?

62

Experiment

63

Q1: What is
going on?
15x slower

Experiment

64

Mem used = 3*m*8 Bytes

Q1: What is
going on?
15x slower

Experiment

65

Mem used = 3*m*8 Bytes

Q1: What is
going on?
15x slower

Cache boundaries

Experiment

66

Q2: is this the
best we can get?

• 14 flops * 229 iterations in 1.2 s = 6.26 109 flops/s
• peak performance:

1*1*4*2.8 GHz = 11.2 Gcycles/s = 11.2 Gflops/s
• We are running at 55.9 % of peak performance

Flops per second

67

• ! Contiguous access, SoA: p=[xxx…yyy…zzz…]
• do ik=1,k
• do im=1,m
• r2 = (p(im)-x0)**2
• +(p(m+im)-y0)**2
• +(p(2*m+im)-z0)**2
• ! r = lj_pot2(r)
• r2i = 1.0d0/r2
• rr6i = r2i*r2i*r2i;
• lj_pot2 = 4.0d0*rr6*(rr6-1.0d0);
• enddo
• enddo

• 3-, 2+, 3*

• 1/
• 2*
• 2*, 1-
• --------------
• 14 flops

Experiment

68

Q2: is this the
best we can get?

Not really, there
is 44% room for

improvement

Experiment

69

Q3: why aren’t we
running faster

• 24 B *229 iterations in 1.2 s = 10.7 GB/s
• Bandwidth measured by Intel mlc:
• 109 GB/s for 10 threads (all reads)
• 10.9 GB/s for 1 thread
• We are running at maximal bandwidth
• Bandwidth saturation

Bytes per second

70

• ! Contiguous access, SoA: p=[xxx…yyy…zzz…]
• do ik=1,k
• do im=1,m
• r2 = (p(im)-x0)**2
• +(p(m+im)-y0)**2
• +(p(2*m+im)-z0)**2
• ! r = lj_pot2(r)
• r2i = 1.0d0/r2
• rr6i = r2i*r2i*r2i;
• lj_pot2 = 4.0d0*rr6*(rr6-1.0d0);
• enddo
• enddo

• 3-, 2+, 3*

• 1/
• 2*
• 2*, 1-
• ------------
• 14 flops

• 3 DP

• ----------
• 24 B

Experiment

71

Q2: is this the best
we can get?
Yes and No

No: We are
processing the
maximum amount of
data in the give time
(but the processor is
idle for 44% of the
time).

Yes: We can improve
if we can do more
useful work on the
data while they are
in cache.

Roofline model

72

Roofline for a 1 core job on a hopper node

Peak performance
11.2 Gflops/s

Roofline model

73

Roofline for a 1 core job on a hopper node

Peak performance
11.2 Gflops/s

Ordered data access
MEMORY BOUND!

56% of peak performance

Roofline model

74

Roofline for a 1 core job on a hopper node

Peak performance
11.2 Gflops/s

Ordered data access
MEMORY BOUND!

56% of peak performance

Can we improve?

On first sight: bandwidth saturated

Thinking again:
We can do more useful work with the
data while they’re in cache =
increase the computational intensity
E.g. implement something more
accurate than Lennard-Jones

Roofline model

75

Roofline for a 1 core job on a hopper node

Peak performance
11.2 Gflops/s

Ordered data access
MEMORY BOUND!

56% of peak performance

Can we improve?

On first sight: bandwidth saturated

Thinking again:
We can do more useful work with the
data while they’re in cache =
increase the computational intensity
E.g. implement something more
accurate than Lennard-Jones

Roofline model

76

Roofline for a 1 core job on a hopper node

Peak performance
11.2 Gflops/s

Ordered data access
MEMORY BOUND!

56% of peak performance

Can we improve?

On first sight: bandwidth saturated

Thinking again:
We can do more useful work with the
data while they’re in cache =
increase the computational intensity
E.g. implement something more
accurate than Lennard-Jones

Roofline model

77

Roofline for a 1 core job on a hopper node

Peak performance
11.2 Gflops/s

Ordered data access
MEMORY BOUND!

56% of peak performance

Can we improve?

On first sight: bandwidth saturated

Thinking again:
We can do more useful work with the
data while they’re in cache =
increase the computational intensity
E.g. implement something more
accurate than Lennard-Jones

Roofline model

78

Roofline for a 1 core job on a hopper node

Peak performance
11.2 Gflops/s

Random data access
Dominated by cache misses

3% of peak performance

Roofline model

79

Roofline for a 1 core job on a hopper node

Peak performance
11.2 Gflops/s

Random data access
Dominated by cache misses

3% of peak performance

Can we improve?

First: improve data access pattern to
reduce the cache misses

Then: if bandwidth saturates
increase the computational intensity

Roofline model

80

Roofline for a 1 core job on a hopper node

Peak performance
11.2 Gflops/s

Random data access
Dominated by cache misses

3% of peak performance

Can we improve?

First: improve data access pattern to
reduce the cache misses

Then: if bandwidth saturates
increase the computational intensity

Roofline model

81

Roofline for a 1 core job on a hopper node

Peak performance
11.2 Gflops/s

Random data access
Dominated by cache misses

3% of peak performance

Can we improve?

First: improve data access pattern to
reduce the cache misses

Then: if bandwidth saturates
increase the computational intensity

• For simple cases
• a back of the envelope calculation like this
• and an understanding of how memory works
can guide you to more efficient code

• For real cases we need something more
sophisticated

82

• Intel Advisor xe
• Vectorization and threading
• Intel VTune Analyzer xe
• Data access and cpu utilization
• Intel Inspector
• Thread performance analysis (OpenMP, Intel TBB)
• Intel Cluster Inspector
• MPI process performance analysis

Intel Parallel Cluster xe

83

• Intel Advisor xe
• Vectorization and threading
• Intel VTune Analyzer xe
• Data access and cpu utilization
• Intel Inspector
• Thread performance analysis (OpenMP, Intel TBB)
• Intel Cluster Inspector
• MPI process performance analysis

Intel Parallel Cluster xe

84

For a later session

• https://software.intel.com/en-us/get-started-with-advisor
• https://software.intel.com/en-us/get-started-with-vtune

Intel advisor

85

$ssh –X vsc20170@login.hpc.uantwerpen.be
Last login: Thu Sep 8 16:38:25 2016 from 143.169.185.55

Welcome to Hopper!
...
vsc20170@ln02 ~$

vsc20170@ln02 ~$ qsub –I –X
vsc20170@r5c6cn05 ~$
vsc20170@r5c6cn05 ~$ module load Advisor
vsc20170@r5c6cn05 ~$ module list
Currently Loaded Modulefiles:

1) Advisor/2016_update4
vsc20170@r5c6cn05 ~$
vsc20170@r5c6cn05 ~$ advixe-gui &

Intel Advisor

86

Allow X11 forwarding. On macOS install
XQuartz, On Windows install Xming

& = Run in background, so the
terminal remains functional

Start interactive job with X11 forwarding.

The compute node we are running on

Intel Advisor

87

Intel Advisor

88

Intel Advisor

89

Intel Advisor

90

Intel Advisor

91

Intel Advisor

92

• Add compiler option –xHost

Intel Advisor

93

Intel Advisor

94

Slight improvement

Intel Advisor

95

Slight improvement
But not what we hoped for

Intel Advisor

96

• Run Intel Advisor again

• List of hot spots

Intel Advisor

97

• Run Intel Advisor again

• List of hot spots

Intel Advisor

98

• Run Intel Advisor again

• List of hot spots

Intel Advisor

99

Random access

• Run Intel Advisor again

• List of hot spots

Intel Advisor

100

Random access

• Run Intel Advisor again

• List of hot spots

Intel Advisor

101

Random access

• Run Intel Advisor again

• List of hot spots

Intel Advisor

102

Contiguous-AoSRandom access

• Run Intel Advisor again

• List of hot spots

Intel Advisor

103

Contiguous-AoSRandom access Contiguous-SoA

• Run Intel Advisor again

• List of hot spots

Intel Advisor

104

Contiguous-AoSRandom access Contiguous-SoA

• Run Intel Advisor again

• List of hot spots

Intel Advisor

105

Contiguous-AoSRandom access Contiguous-SoA

• Run Intel Advisor again

• List of hot spots

Intel Advisor

106

Loop over m

Contiguous-AoSRandom access Contiguous-SoA

• Run Intel Advisor again

• List of hot spots

Intel Advisor

107

• Run Intel Advisor again

• List of hot spots

Intel Advisor

108

• Run Intel Advisor again

• List of hot spots

Intel Advisor

109

• Run Intel Advisor again

• List of hot spots

Intel Advisor

110

• Run Intel Advisor again

• List of hot spots

Intel Advisor

111

Intel Advisor

112

Intel Advisor

113

Intel Advisor

114

• Advisor tells us
• Vectorization is ok
• Strided memory access in the random access loop is a

problem
• Let’s run a memory access analysis in VTune

115

$ssh –X vsc20170@login.hpc.uantwerpen.be
Last login: Thu Sep 8 16:38:25 2016 from 143.169.185.55

Welcome to Hopper!
...
vsc20170@ln02 ~$ module load VTune
vsc20170@ln02 ~$ module list
Currently Loaded Modulefiles:
1) GCCcore/5.4.0 4) ifort/2016.3.210-GCC-5.4.0-2.26 7) VTune/2016_update3
2) binutils/2.26-GCCcore-5.4.0 5) iccifort/2016.3.210-GCC-5.4.0-2.26
3) icc/2016.3.210-GCC-5.4.0-2.26 6) Advisor/2016_update4

vsc20170@ln02 ~$
vsc20170@ln02 ~$ amplxe-gui &

Intel Vtune Amplifier

116

Intel Vtune Amplifier

117

Intel Vtune Amplifier

118

Some Hot Spot analysesSome Hot Spot analysesSome Hot Spot analysesSome Hot Spot analysesSome Hot Spot analyses

Intel Vtune Amplifier

119

Some Advanced Hot spot analysesSome Advanced Hot spot analyses

Intel Vtune Amplifier

120

Some Memory ACCess analysesSome Memory ACCess analyses

Intel Vtune Amplifier

121

Intel Vtune Amplifier

122

New analysis

Intel Vtune Amplifier

123

Analyze memory access

Intel Vtune Amplifier

124

Hit start

Intel Vtune Amplifier

125

Intel Vtune Amplifier

126

Intel Vtune Amplifier

127

Our program is memory bound

Intel Vtune Amplifier

128

Due to complete cache misses

Intel Vtune Amplifier

129

Bandwidth saturates fast because we move an
entire cache line for almost every data item

Intel Vtune Amplifier

130

complete cache misses

Intel Vtune Amplifier

131

Average # of cycles we have to wait for
a data item (should be ~1!)

Intel Vtune Amplifier

132

Intel Vtune Amplifier

133

Intel Vtune Amplifier

134

Intel Vtune Amplifier

135

Intel Vtune Amplifier

136

CPI = cycles per instruction
Peak performance corresponds to 4 instructions per
cycle in DP vectorized code. Hence CPI should be

between 0.25 and 0.5.

Intel Vtune Amplifier

137

Pipeline stalls (because the data is not arriving in time)

Intel Vtune Amplifier

138

Our program is memory bound

Intel Vtune Amplifier

139

Our program is memory bound

Intel Vtune Amplifier

140

Bandwidth saturates fast because we move an entire
cache line for almost every data item

Intel Vtune Amplifier

141

Intel Vtune Amplifier

142

Only one of 20 cores were use (no OpenMP paralellization)

Intel Vtune Amplifier

143

• Advisor is profiler
• Analyzes your code on a per statement basis
• Looks at the assembly code to analyze vectorization
• Hints to the location of the problem
• Vtune Amplifier accumulates statistics on hardware

events such as expensive instructions, vector
instructions, cache misses, …
• Statistics accumulated on a per subprogram (function,

subroutine) basis, not per statement
• Hints to the nature of the problem
• Both are complementary

Advisor vs Vtune amplifier

144

• Compiler does good job at producing vectorized
code
• Advisor will tell you if and why the compiler is

sometimes not able to produce vectorized code,
and will suggest solutions
• Advisor tells you which parts of your code consume

the most cputime and are candidates for
optimization

What have we learned so far

145

• Most often performance problems on modern cpus
are due to memory access problems (DRAM latency
hits you)
• VTune amplifier gives you clues on how and where

to fixes the issues
• CPI and Cache Misses
• Optimize

1.If there are cache misses, try to reduce them
• Easier said than done (we’ll come to that in the next section)

2.If you are memory bound and CPI is high,
1. Verify vectorization
2. Increase the computational complexity (do more useful work on

the data while it is in cache)

What have we learned so far

146

• Suppose we have 109 atoms
• Computing all interactions in single precision
• 109(109-1)/2 ~ 0.5 1018

• complexity 𝑂(𝑁,)– not a good idea
• Adding 1 atom increases the work by a factor 𝑁 = 104

• Adding 2 atoms increases the work by a factor 𝑁 5 𝑁 = 1067

• …

• Lennard-Jones is short range
• lim

;→=
4𝜋𝑟,	𝑉$% 𝑟 → 0

• In practice cut-off 𝑟. ≅ 2.5

Molecular dynamics settings

147

forces = 0
do i=1,N

do j=1,N-1
r2 = squared_distance(i,j)
if r2<rcutoff2

force_ij = ljforce(r2)
force(i) = force(i) + force_ij
force(j) = force(j) - force_ij

endif
enddo

enddo
integrate forces to update atom positions

Implementing cut-off

148

• Still 𝑂(𝑁,) L
• Might be ok for small N

• Verlet lists
• Verlet list of atom i is list of all atoms

j for which 𝑗 < 𝑖 and 𝑟'(< 𝑟.
• Increase cutoff slightly so that we do

not have to update the Verlet lists at
every timestep (depending on how
vigorously the atoms move)
• Verlet list construction is amortized

• Construction of Verlet lists is still 𝑂(𝑁,)L
• Is dominant data structure: typically between 50

and 100 neighbour atoms/atom

Implementing cut-off

149

• Put atoms in cells of width 𝑟. : 𝑂 𝑁 J
• Only atoms in neigbouring cells can satisfy 𝑟'(< 𝑟.
• Because of symmetry only half

of the neighbouring cells must
be examined
• Construct Verlet lists as follows
• Loop over all cells [𝑂 𝑁]
• Loop over all neighbours of the

current cell using the neighbour
stencil [𝑂 1]
• Construct the Verlet list of all

atoms in the current cell [𝑂 1]

• Now our MD algorithm is 𝑂 𝑁 J

Implementing cut-off

150

• Put atoms in cells of width 𝑟. : 𝑂 𝑁 J
• Only atoms in neigbouring cells can satisfy 𝑟'(< 𝑟.
• Because of symmetry only half

of the neighbouring cells must
be examined
• Construct Verlet lists as follows
• Loop over all cells [𝑂 𝑁]
• Loop over all neighbours of the

current cell using the neighbour
stencil [𝑂 1]
• Construct the Verlet list of all

atoms in the current cell [𝑂 1]

• Now our MD algorithm is 𝑂 𝑁 J

Implementing cut-off

151

• Atoms move!
• Iterating over the Verlet lists to compute the

interactions will soon jump randomly through
memory
• Performance evolves naturally to the random

access case

• Fix data access pattern using spatial sorting
• Spatial sort = ensure that atoms which are close in

space are also close in memory
• This reduces cache misses

Implementing cut-off

152

• Space filling curve
• Linearize a space of

dimension >1
• Hilbert curve
• Hilbert index:

coordinate of a cell
along the Hilbert curve
• Locality guarantee:

points close in space
are also close along
the space filling curve
(on average)

Fixing the data access pattern

153

1

2 3

4 1 2

34

5

6 7

8 9

10 11

12

1314

15 16

1. Sort atom property arrays (rx,ry,rz,vx,vy,vz,…) based on
the Hilbert index h of the cell of the atoms (spatial sort).
Atoms which are close in space (and hence will interact) will be close in memory
(and hence will be in the cache with high probability)

2. Build a table containing the index of the first atom in each
cell, and the number of atoms in the cell (Hilbert list)

3. Build Verlet list from the Hilbert list (discard the latter)
4. Compute the interactions by looping over the Verlet list
5. Integrate forces, updating velocities and positions and time
6. If need_to_rebuild_verlet_list is true

jump back to step 1.
else

continue at step 4.

Fixing the data access pattern

1. Sort atom property arrays (rx,ry,rz,vx,vy,vz,…) based on
the Hilbert index h of the cell of the atoms (spatial sort).
Atoms which are close in space (and hence will interact) will be close in memory
(and hence will be in the cache with high probability)

2. Build a table containing the index of the first atom in each
cell, and the number of atoms in the cell (Hilbert list)

3. Build Verlet list from the Hilbert list (discard the latter)
4. Compute the interactions by looping over the Verlet list
5. Integrate forces, updating velocities and positions and time
6. If need_to_rebuild_verlet_list is true

jump back to step 1.
else

continue at step 4.

Fixing the data access pattern

• We need to
• Compute Hilbert indices
• Sort atom property arrays
• Build Hilbert list and Verlet list

• Fixing data access patterns can be a lot of work

Fixing the data access pattern

• Implementation in Fortran? C? C++?
• Arguments
• C++ is inefficient
• Modern compilers good enough to generate efficient code
• After all your are using the same hardware

Intermezzo
Choosing a programming language

157

Lie #1

• Implementation in Fortran? C? C++?
• Arguments
• C++ is inefficient
• Modern compilers good enough to generate efficient code
• After all your are using the same hardware

Intermezzo
Choosing a programming language

158

Lie #1

• Implementation in Fortran? C? C++?
• Arguments
• C++ is inefficient
• Modern compilers good enough to generate efficient code
• After all your are using the same hardware

• Fortran is efficient

Intermezzo
Choosing a programming language

159

Lie #2

Lie #1

• Implementation in Fortran? C? C++?
• Arguments
• C++ is inefficient
• Modern compilers good enough to generate efficient code
• After all your are using the same hardware

• Fortran is efficient
• Also fortran has constructs that sometimes come in handy, but can kill

performance
• But C++ has quite a bit more features which can kill performance

than Fortran
• Because C++ is a general purpose language and Fortran is meant for

scientific computing
• Yet these features can be extremely useful if you use them wisely
• For computational kernels where performance is an issue you generally

need to stay close to the C subset and far away from the C++ features
such as classes, inheritance, virtual functions, etc. (templates are an
exception)

Intermezzo
Choosing a programming language

160

Lie #2

Lie #1

• Implementation in Fortran? C? C++?
• Arguments
• C++ is inefficient
• Modern compilers good enough to generate efficient code
• After all your are using the same hardware

• Fortran is efficient
• Also fortran has constructs that sometimes come in handy, but can kill

performance
• But C++ has quite a bit more features which can kill performance

than Fortran
• Because C++ is a general purpose language and Fortran is meant for

scientific computing
• Yet these features can be extremely useful if you use them wisely
• For computational kernels where performance is an issue you generally

need to stay close to the C subset and far away from the C++ features
such as classes, inheritance, virtual functions, etc. (templates are an
exception)

Intermezzo
Choosing a programming language

161

Intermezzo
Choosing a programming language

162

• I’ll use C++ because I know it better

Most often a lie too!

Intermezzo
Choosing a programming language

163

• I’ll use C++ because I know it better

Most often a lie too!• I’ll use C++ because I know it better
• Unless you have read and understood all the C++ books by Scott

Meyers, Herb Sutter, Andrei Alexandrescu, Nicolai Josuttis
• In which case you probably also understand which C++ features

can kill performance and when they should be used to your
advantage
• For number-crunching I find myself advancing faster using Fortran

than using C++ (which I do know better!)

Intermezzo
Choosing a programming language

164

• I’ll use C++ because it is better documented
• There aren’t too many books on Fortran like the above ones on

C++
• There is no website of the same quality as cplusplus.com or

cppreference.com for Fortran (imho)
• But still it is much harder to learn and to learn to use efficiently
• Not a valid argument

Intermezzo
Choosing a programming language

165

Not a lie

• I’ll use C because that is the language in
which Python was written and I want too
integrate my code with Python
• Python integration leverages your code with
• A high level programming interface:
• Providing initial data for your simulation is much easier and flexible

through a Python script than having to parse input files…
• Compose and customize high level solution schemes with ease (e.g.

choosing another solver for a subproblem)
• Hundreds of very useful open source Python libraries: Numpy,

Scipy, Pandas, matplotlib, …
• But …

Intermezzo
Choosing a programming language

166

Good point!

• I’ll use C because that is the language in which
Python was written and I want too integrate my
code with Python [continued]
• …
• But the easiest way to create your own module that can be

imported in Python is through f2py
• Automatically turns your Fortran code into a Python module
• As simple as
• F2py –c mysource.f90 –m myPythonModule

• Automatically integrates with Numpy! Pass Numpy arrays to
your own Fortran library with no effort and no copying of data!
• Much harder in C
• Also feasible in C++ with the help of boost.python and

boost.multi_array, easier than C but not as easy as f2py
∴ stick to Fortran

Intermezzo
Choosing a programming language

167

• I’ll use C/C++ because I don’t want
to mess with storage orders
• Fortran uses row-major ordering indices start at 1
• C/C++ use column-major ordering indices start at 0
• Plenty of ways to mess up!
• Inadvertent copying of the array when passing to fortran!
• Trivial for 1D arrays (but mind the indexing)
• Numpy arrays by default use the C convention, but arrays can be

easily made to follow the Fortran convention:
• A=numpy.empty((2,2), dtype=np.float32, order=‘F’)

• A little bit of experimentation will take away the confusion
• Simplest way to avoid problems:
• If you use fortran modules adhere to fortran convention in numpy arrays
• If you use C/C++ modules adhere to C/C++ convention in numpy arrays
• If you use both pay attention..

Intermezzo
Choosing a programming language

168

Good point!

• I’ll use X because I need to use some library Y that
is written in X
• Point taken, often the easiest way
• Valid argument for libraries that deal with parallelization

issues:
• TBB, for shared memory parallelization (C++)
• Libraries abstracting vector instructions Vc, boost.simd (C++)

• However, there is a lot of support for mixed language
programming
• If you do not master X you might end up writing inefficient

code and loosing the advantage of using Y
• it may be worthwhile to find out how to tackle the mixed

language challenge
• Once done, you will proceed faster and write efficient code

Intermezzo
Choosing a programming language

169

• Stick to Fortran (unless you are a seasoned C++
programmer)

• Using Python and Numpy for high level
programming and Fortran (C++) for your own
number-crunching routines is a very practical
approach
• Use f2py to turn your fortran routines into a Python module

that is compatible with Numpy

To conclude

170

• Details of Python+Numpy+Fortran/C++ is topic of
another talk
• Including shared memory parallelism (multi-

threading) and distributed memory parallelism
(multi-node)

Intermezzo
Choosing a programming language

171

Back to Lennard-Jones MD

172

Computational kernel
Fortran
MD stuff

LJ potential, force,
loop over verlet list

Organizing the computations
Python

Initialization, construct Verlet lists, control experiment, testing, …
Store atom data in Numpy arrays

Hilbert curve
C++

[i,j,k] <-> h

Python module
“import pyHilbertCpp”

Python module
“import pyMDFortran”

f2py (Numpy) C++,
boost.python,

boost.multi_array

• Take derivative of (Lennard-Jones) potential with
respect to interatomic distance vector = force
exerted on the atoms

• HI ;
H;⃗ = HIK ;K

H;K
H;K

H;⃗ =
HIK ;K

H;K 	2		𝑟 = 𝑓 𝑟, 	𝑟
• Loop	over	𝑖
• Loop	over	𝑗 ∈ 𝑉𝐿'
• �⃗�' += 𝑓 𝑟'(, 𝑟'(
• �⃗�(−= 𝑓 𝑟'(, 𝑟'(

• 3 x load (𝑟()
• 3 x load (�⃗�()
• 3 x store (�⃗�()

MD interaction forces

173

• Baseline case:
• N atoms
• Compute interaction forces of atom 0 with all other atoms
• Contiguous memory access
• Bandwidth saturated

Results

174

Baseline

175

Baseline

176

Baseline

Results

177

MC MD

Results

178

MC: 450 106 interactions/s

MC MD

Results

179

MC: 450 106 interactions/s MD: 90 106 interactions/s

MC MD

Results

180

MC: 450 106 interactions/s MD: 90 106 interactions/s

MC MD

In terms of interactions/s MD is about 5 times slower than MC
• A bit more instructions per interaction, but MC is memory bound, that

should not matter
• 3 times more memory access
• With a read:write ratio of 2:1 the bandwidth drops from 11 GB/s to 9.5 GB/s
• 3x11/9.5 = 3.47
• Still factor 1.44 slower than expected

• Three cases:
1. Atoms on FCC lattice
2. Permute the atoms (=random memory access)
3. Spatial sort by hilbert index

• Every experiment build the Verlet list and
computes the interactions
• CPUtime is measured only for computing the

interactions
• Plot result relative to baseline
• 90 106 interactions/s

Experiments

181

• Put atoms on FCC lattice
• 4 atoms per unit cell
• Closest neighbor

distance = LJ 𝑟R'S
• 𝑟.TUVWW = 3𝑟R'S

Case 1

182

Case 1

183

Case 1

184

Case 1

185

Case 1

186

Case 1

187

Case 1

188

Case 1

189

Case 1

190

Close to baseline

Case 2

191

Case 2

192

Due to diffusion this
becomes the real
case pretty soon!

Case 3

193

Case 3

194

We are back on
the baseline!

Case 3

195

We are back on
the baseline!

Improved
performance

at large N

Case 3

196

We are back on
the baseline!

Improved
performance

at large N

Spatial sort is relatively expensive
but the timestep and displacements are small
Cost can be amortized over many timesteps

1. Sort atom property arrays (rx,ry,rz,vx,vy,vz,…) based on
the Hilbert index h of the cell of the atoms (spatial sort).
Atoms which are close in space (and hence will interact) will be close in memory
(and hence will be in the cache with high probability)

2. Build a table containing the index of the first atom in each
cell, and the number of atoms in the cell (Hilbert list)

3. Build Verlet list from the Hilbert list (discard the latter)
4. Compute the interactions by looping over the Verlet list and

measure the performance (e.g. interactions/s)
5. Integrate forces, updating velocities and positions and time
6. If performance degrades

jump back to step 1.
else

continue at step 4.

Fixing the data access pattern

1. Sort atom property arrays (rx,ry,rz,vx,vy,vz,…) based on
the Hilbert index h of the cell of the atoms (spatial sort).
Atoms which are close in space (and hence will interact) will be close in memory
(and hence will be in the cache with high probability)

2. Build a table containing the index of the first atom in each
cell, and the number of atoms in the cell (Hilbert list)

3. Build Verlet list from the Hilbert list (discard the latter)
4. Compute the interactions by looping over the Verlet list and

measure the performance (e.g. interactions/s)
5. Integrate forces, updating velocities and positions and time
6. If performance degrades

jump back to step 1.
else

continue at step 4.

Fixing the data access pattern

• atoms : 2,13 106

• pairs : 162 106

• Ratio : 76
• Pairs computed per second : 88.6 106

• B/atom: 376,5 (320B is in the verlet list)
• Bandwidth = 9,5 GB/s (measured by mlc 2 reads : 1 write)
• maximum atoms per second: 27.000.000
• actual atoms per second: 1.160.000
• ratio: 0,04

• flops_per_pair : 27
• flops_per_atom : 2055,5
• gflops_per_second: 2,39
• peak performance : 11,2
• ratio : 0,21

Performance analysis

199

• atoms : 2,13 106

• pairs : 162 106

• Ratio : 76
• Pairs computed per second : 88.6 106

• B/atom: 376,5 (320B is in the verlet list)
• Bandwidth = 9,5 GB/s (measured by mlc 2 reads : 1 write)
• maximum atoms per second: 27.000.000
• actual atoms per second: 1.160.000
• ratio: 0,04

• flops_per_pair : 27
• flops_per_atom : 2055,5
• gflops_per_second: 2,39
• peak performance : 11,2
• ratio : 0,21

Performance analysis

200

Not memory bound

Not compute bound either!

Lot of flops per atom!

Roofline MD setting

201

MD

Roofline MD setting

202

MD

MC

What do the intel tools tell?
Advisor

203

j=1
do ia=1,n_atoms

ia_pairs = verlet_linear(j) ! Size of the Verlet list of atom ia
 !DIR$ SIMD
 do k = j+1,j+ia_pairs

ja = verlet_linear(k)+1 ! +1 since Fortran starts counting from 1 !
 dx = rx(ja)-rx(ia)
 dy = ry(ja)-ry(ia)
 dz = rz(ja)-rz(ia)
 aij = lj_force_factor2(dx**2 + dy**2 + dz**2)

! update particle ia acceleration
 ax(ia) = ax(ia) + aij*dx
 ay(ia) = ay(ia) + aij*dy
 az(ia) = az(ia) + aij*dz

! update particle ja acceleration
 ax(ja) = ax(ja) - aij*dx
 ay(ja) = ay(ja) - aij*dy
 az(ja) = az(ja) - aij*dz

enddo
 j = j + 1 + ia_pairs
enddo

What do the intel tools tell?

204

j=1
do ia=1,n_atoms

ia_pairs = verlet_linear(j) ! Size of the Verlet list of atom ia
 !DIR$ SIMD
 do k = j+1,j+ia_pairs

ja = verlet_linear(k)+1 ! +1 since Fortran starts counting from 1 !
 dx = rx(ja)-rx(ia)
 dy = ry(ja)-ry(ia)
 dz = rz(ja)-rz(ia)
 aij = lj_force_factor2(dx**2 + dy**2 + dz**2)

! update particle ia acceleration
 ax(ia) = ax(ia) + aij*dx
 ay(ia) = ay(ia) + aij*dy
 az(ia) = az(ia) + aij*dz

! update particle ja acceleration
 ax(ja) = ax(ja) - aij*dx
 ay(ja) = ay(ja) - aij*dy
 az(ja) = az(ja) - aij*dz

enddo
 j = j + 1 + ia_pairs
enddo

What do the intel tools tell?

205

• SIMD vectorization means that you
update ax(aj) for 4 successive ja
values (also ay(aj) and az(ja))

• The compiler cannot know that the ja
are different

• Assumed dependency
• We know that the ja are different by

construction of the Verlet list
• We must tell the compiler to ignore

assumed dependencies

j=1
do ia=1,n_atoms

ia_pairs = verlet_linear(j) ! Size of the Verlet list of atom ia
 !DIR$ SIMD
 do k = j+1,j+ia_pairs

ja = verlet_linear(k)+1 ! +1 since Fortran starts counting from 1 !
 dx = rx(ja)-rx(ia)
 dy = ry(ja)-ry(ia)
 dz = rz(ja)-rz(ia)
 aij = lj_force_factor2(dx**2 + dy**2 + dz**2)

! update particle ia acceleration
 ax(ia) = ax(ia) + aij*dx
 ay(ia) = ay(ia) + aij*dy
 az(ia) = az(ia) + aij*dz

! update particle ja acceleration
 ax(ja) = ax(ja) - aij*dx
 ay(ja) = ay(ja) - aij*dy
 az(ja) = az(ja) - aij*dz

enddo
 j = j + 1 + ia_pairs
enddo

What do the intel tools tell?

206

Ignore assumed dependencies and vectorize the loop

• “inserts present” = hint for gather/scatter

• Filling a vector register element per element
(in the case of non-contiguous elements)

• AVX (highest SIMD extension available on Hopper)
has no built-in support for gather/scatter

• AVX2 has special instructions for gather/scatter
• Available on BrENIAC
• Available on successor of Turing

What do the intel tools tell?

207

j=1
do ia=1,n_atoms

ia_pairs = verlet_linear(j) ! Size of the Verlet list of atom ia
!DIR$ SIMD

 do k = j+1,j+ia_pairs
ja = verlet_linear(k)+1 ! +1 since Fortran starts counting from 1 !

 dx = rx(ja) - rx(ia)
 dy = ry(ja) - ry(ia)
 dz = rz(ja) - rz(ia)
 aij = lj_force_factor2(dx**2 + dy**2 + dz**2)

! update particle ia acceleration
 ax(ia) = ax(ia) + aij*dx
 ay(ia) = ay(ia) + aij*dy
 az(ia) = az(ia) + aij*dz

! update particle ja acceleration
 ax(ja) = ax(ja) - aij*dx
 ay(ja) = ay(ja) - aij*dy
 az(ja) = az(ja) - aij*dz

enddo
 j = j + 1 + ia_pairs
enddo

208

Gather operation moving
rx(ja), ry(ja), rz(ja)

for 4 successive ja values
into the vector registers

Scatter operation moving
ax(ja), ay(ja), az(ja)

for 4 successive ja values
out of the vector registers.

209

• C = A+B
• No gather/scatter, 4 successive items moved as a block

into/out of vector registers

A

B

memory

210

• C = A+B
• No gather/scatter, 4 successive items moved as a block

into/out of vector registers

A

B

A

B Vector registers memory

211

• C = A+B
• No gather/scatter, 4 successive items moved as a block

into/out of vector registers

A

B

A

B

C

vadd Vector registers memory

212

• C = A+B
• No gather/scatter, 4 successive items moved as a block

into/out of vector registers

A

B

C

A

B

C

vadd Vector registers memory

213

• C = A+B
• No gather/scatter

A

B

memory

• C = A+B
• No gather/scatter, 4 successive items moved as a block

into/out of vector registers

214

• C = A+B
• No gather/scatter

A

B

A

B memoryVector registers

• C = A+B
• No gather/scatter, 4 successive items moved as a block

into/out of vector registers

215

• C = A+B
• No gather/scatter

A

B

A

B

C

vadd
memoryVector registers

• C = A+B
• No gather/scatter, 4 successive items moved as a block

into/out of vector registers

216

• C = A+B
• No gather/scatter

A

B

C

A

B

C

vadd
memoryVector registers

• C = A+B
• No gather/scatter, 4 successive items moved as a block

into/out of vector registers

217

• C = A+B
• gather/scatter, items moved one by one into/out of vector

registers

A

B

memory

218

• C = A+B
• gather/scatter, items moved one by one into/out of vector

registers

A

B

A

B memoryVector registers

219

• C = A+B
• gather/scatter, items moved one by one into/out of vector

registers

A

B

C

A

B

C

vadd
memoryVector registers

220

• C = A+B
• gather/scatter, items moved one by one into/out of vector

registers

A

B

C

A

B

C

vadd
memoryVector registers

• LLC misses 0.008 %
• LJ_force_factor2 0.59 cpi
• Compute_interactions 0.77 cpi

• cpi at best 0.25
• cpi ≤ 1 considered acceptable in HPC

• There is still room for improvement
• No more low hanging fruit, though

What do the intel tools tell?

221

• Assembly code
• Architecture dependent code
• Libraries for writing explicit vector code
• Architecture independent code
• C++ only
• Vc (github.com/VcDevel/Vc)
• Boost.simd (github.com/NumScale/boost.simd)
• Similar performance
• Rewrite algorithm in terms of vector operations

rather than scalar operations

Beyond auto-vectorisation

222

• Gain:
• 120–127 106 interactions per second (instead of 90 106)
• 30% improvement
• Not bad, but not effortless (took me about 1½ week)
• AVX2 will probably do even better
• Coding details in other talk

Beyond auto-vectorisation

223

1. Data access pattern is crucial to performance

Conclusions

224

• Monte Carlo case (3N reads, no writes)
• Contiguous data access:
• 450 106 interactions/s
• Bandwidth saturation (machine limit)
• Random access:
• Performance drops by factor 15 (cache misses, gather/scatter)

Conclusions

225

• Bandwidth saturation means that the CPU is waiting
for the data to arrive
• Try to do more computations with the data that is available,

e.g.:
• Additional computations
• A more complex model

• Program will not run faster but will do more work in the same
time

Conclusions

226

• Molecular dynamics case (6N reads, 3N writes + VL)
• Contiguous data access:
• 90 106 interactions/s
• No machine limits hit
• gather/scatter
• Random access:
• Performance drops by factor 7
• Spatial sort fixes the problem

• Fixing the data access pattern is not always easy
• Involves usually some form of sorting the data

Conclusions

227

1. Data access pattern is crucial to performance
2. Spatial sort using space filling curves is

useful technique for fixing data access
patterns

Conclusions

228

1. Data access pattern is crucial to performance
2. Spatial sort using space filling curves
3. Intel tools (Advisor, VTune) provide useful

clues to optimizing your code
• Hot spots
• The nature of hot spots (data access, expensive

instructions, …)
• Issues with vectorization

Conclusions

229

1. Data access pattern is crucial to performance
2. Spatial sort using space filling curves is useful
3. Intel tools (Advisor, VTune) provide useful clues
4. Fortran has many advantages for

programming number-crunching routines
• F2py for producing python modules

Conclusions

230

Python/Fortran/C++

231

Python/Numpy
• verify code correctness
• generate FCC lattice
• generate arrays filled

with random numbers
• generate permutations
• zero accelerations

between time steps
• build Verlet list
• spatial sort of atom

property arrays
• define coarse

computational strategy
and data structures

• control and initialize
the experiments

• plot results

Fortran
• Lennard-Jones potential
• Lennard-Jones forces
• iterate over Verlet list

and compute
interactions

• iterate over array and
compute interactions
(baselines)

C++
• compute hilbert indices
• build Verlet list
• iterate over Verlet list

and compute inter–
actions using simd
libraries

code 80%
cputime 5%

code 10%
cputime 90%

10%
cputime 5%

Speedup of 1200x !

1. Data access pattern is crucial to performance
2. Spatial sort using space filling curves is useful
3. Intel tools (Advisor, VTune) provide useful clues
4. Fortran has many advantages
5. Use a simple but relevant baseline that you

understand to judge the performance of your
code and direct your efforts

Conclusions

232

1. Data access pattern is crucial to performance
2. Spatial sort using space filling curves is useful
3. Intel tools (Advisor, VTune) provide useful clues
4. Fortran has many advantages
5. Use a simple relevant baseline
6. Be aware of the machine limits
• Bandwidth
• Peak performance
• Roofline model

Conclusions

233

1. Data access pattern is crucial to performance
2. Spatial sort using space filling curves is useful
3. Intel tools (Advisor, VTune) provide useful clues
4. Fortran has many advantages
5. Use a simple relevant baseline
6. Be aware of the machine limits
7. SIMD libraries are useful
• Vc, Boost.simd

Conclusions

234

1. Data access pattern is crucial to performance
2. Spatial sort using space filling curves is useful
3. Intel tools (Advisor, VTune) provide useful clues
4. Fortran has many advantages
5. Use a simple relevant baseline
6. Be aware of the machine limits
7. Simd libraries are useful

Thank you

You are always welcome to discuss your
(computational) problems

Conclusions

235

