
Checkpoint/Restart
facilities

HPC-TNT-3 11-12-2015

ANNIE CUYT☐ STEFAN BECUWE☐ FRANKY BACKELJAUW ☐ KURT LUST☐ ENGELBERT TIJSKENS

• What is checkpointing?
• What problems can it solve?
• Different approaches to C/R
• Practically:
• Applications with built-in C/R capability (native C/R)
• VASP, LAMMPS, ...

• csub/BLCR
• Intel mpirun
• dmtcp

• Case study using VASP/5.3.5-intel-2015a

Overview

2

• Checkpoint =
• Dump the state of program in a file

• Restart =
• Read the program state back in and

continue the computation

What is checkpoint/restart?

3

• Program did not run until completion
• Hardware failure
• Power problem
• Running out of
• Wall time
• Memory
• Disk space

• Maximum wall time of a cluster exceeded
• E.g. 3 days on current Tier-1

• Continue a job with different input parameters
• (only for native C/R)

What problems can it solve?

4

• Without restart capability all cpu hours spent on
the job are lost

• With restart capability only the cpu hours spent
since the last checkpoint are lost

• Checkpointing adds relatively small overhead

What problems can it solve?

5

Different approaches to C/R

6

Dump	the	state	of	the	

solution	(procedure) program	environment
White	box
requires	understanding	 of	the	state	of	the	
problem and	of	the	solution	procedure	

Black	box

C/R logic	must	be	implemented	
(harder	 to	maintain)

No	connection	 to	problem	domain

Understandable Unrelated	to	problem domain

Dumps	data Dumps	bits

Smaller	files Big	files	(program	 logic	is	also	in	memory)

Only feasible	at	specific	points	in	the	
solution	procedure,	 e.g.	end	of	time	step

Halt	program	at any	time	(almost)	and	
dump	

Solution procedure	can	often	be	modified	
before	restarting

Continue the	original	 job	or	nothing

http://cms.mpi.univie.ac.at/vasp/vasp/ISTART_tag.html

• ISTART-tag ISTART=1 if WAVECAR exists, 0 otherwise
• This flag determines whether to read the file WAVECAR or not.
• 0 = Start job: begin from scratch. Initialize the orbitals according to

the flag INIWAV.
• 1 = restart with constant energy cut-off. Continuation job - read

orbitals from file WAVECAR
• 2 = restart with constant basis set : Continuation job -- read orbitals

from the file WAVECAR
• 3 = full restart including orbitals and charge prediction

Same as ISTART=2 but in addition a valid file TMPCAR must exist
containing the positions and orbitals at time steps t(N-1) and t(N-2),
which are needed for the orbital and charge prediction scheme (used
for MD-runs).

• caveat – WAVECAR not always written frequently...

Applications with built-in C/R
VASP

7

http://lammps.sandia.gov/doc/restart.html

• restart command: checkpoint every so many timesteps
restart 100000 restart.*.equil

100000 => restart.1.equil
200000 => restart.2.equil
...

restart 1000 poly.1 poly.2
1000 => poly.1
2000 => poly.2
3000 => poly.1
4000 => poly.2
...

• write_restart: dump once
• read_restart: read and continue computation

Applications with built-in C/R
LAMMPS

8

http://www.gromacs.org/Documentation/How-tos/Doing_Restarts

• GROMACS writes restart files automatically (from v4.1 on):
state.cpt

• Restart
mdrun -s topol.tpr -cpi state.cpt

Applications with built-in C/R
GROMACS

9

• Quantum-espresso
• http://www.quantum-espresso.org/wp-

content/uploads/Doc/pw_user_guide/node19.html
• ABINIT
• http://www.abinit.org/doc/helpfiles/for-

v7.10/input_variables/varrlx.html#restartxf

• CP2K
• https://www.cp2k.org/restarting

• Molpro
• https://www.molpro.net/info/2015.1/doc/quickstart/node65.html

• GAMESS
• http://www.cfs.dl.ac.uk/docs/html/part3/node6.html

• OpenMx
• http://www.openmx-square.org/adpack_man2.2/node18.html

• Check the application manual
• Search for ‘restart’, rather than ‘checkpoint’

Applications with built-in C/R

10

• Work “in principle” for any program
• In practice some caveats

1. BLCR (Berkeley lab C/R)

2. Intel mpirun (built-in BLCR)

3. dmtcp : distributed multi-
threading checkpointing

Black box approaches

11

• NO mpi

• intel mpi
only

• ?

• Based on BLCR
• Use csub instead of qsub

qsub my_job_script.sh

csub --job_time=“01:00:00” \
--no_cleanup_chkpt \
-s my_job_script.sh

csub --resume=“checkpoint_filename”

• Break up my_job_script.sh in 1h pieces and dump
the program state after 1h

• Resume until job finishes
• Checkpoints are dumped in $VSC_SCRATCH/chkpt

BLCR/csub

12

• Allows to interrupt running program for
checkpointing

• Only during
• a mpi communication that involves ALL processes
• MPI_COMM_WORLD
• You can add MPI_BARRIER or MPI_IBARRIER+MPI_WAIT to

your code to add more occasions for interrupting and
checkpointing

Intel mpirun

13

• Monte Carlo computation of 𝜋
• 𝐴 = 𝜋𝑟%, 𝑟 = 1
• Generate random point in square
• 𝜋		~	4𝑛+,-+./ 𝑛01023⁄
• Easily parallellized
• Make sure each thread/

or process has a random
number generator with a
different but deterministic
seed

Example problem

14

#!/bin/bash
#PBS -l nodes=2:ppn=20
#PBS -l walltime=0:10:00

cd $PBS_O_WORKDIR
mkdir -p ./ckpt # destination for checkpoint files

module load intel/2015a
export I_MPI_FABRICS=ofa # some environment variables needed
export I_MPI_OFA_DYNAMIC_QPS=1
export I_MPI_OFA_NUM_RDMA_CONNECTIONS=0

mpirun –restart \# for restart only
-ckpoint on \# checkpointing on
-ckpoint-prefix $PBS_O_WORKDIR/ckpt \# checkpoint file dest
-ckpoint-interval 60 \# every 60 s
../../test \# executable

Intel mpirun

15

• VASP
• 4 nodes x 20 cores/node
• ~3h wall time
• CuInSe2

• 4 atom system => 1 node per atom (rule of
thumb)

• VASP/5.3.5-intel-2015a -> intel mpi

Case study

16

#!/bin/bash
#PBS -l nodes=4:ppn=20
#PBS -l walltime=01:00:00 #it will run out of walltime

module load VASP/5.3.5-intel-2015a
export I_MPI_FABRICS=ofa
export I_MPI_OFA_DYNAMIC_QPS=1
export I_MPI_OFA_NUM_RDMA_CONNECTIONS=0

cd $PBS_O_WORKDIR
mkdir -p ./ckpt

mpirun –verbose -ckpoint on
-ckpoint-logfile ./ckpt.$PBS_JOBID.log
-ckpoint-prefix ./ckpt
-ckpoint-interval 1200 #expect 2 chkpts
vasp-eps2

Job script

17

Helps to diagnose errors

Files written

18

could use VASP
built-in restart

Checkpoint files
1 for each node

Checkpoint log

Checkpoint log file

19

[Thu Dec 10 10:06:38 2015]
r3c6cn04.hopper.antwerpen.vsc Checkpoint log
intialized (master mpiexec pid 54279, 80
processes, 4 nodes, keeping last 1 checkpoint(s))
[Thu Dec 10 10:06:38 2015]
r3c6cn04.hopper.antwerpen.vsc Permanent
checkpoint storage:
/scratch/antwerpen/201/vsc20170/checkpointing/in
tel-mpi/vasp/ckpt
[Thu Dec 10 10:26:38 2015]
r3c6cn04.hopper.antwerpen.vsc Started
checkpoint number -1 ...
[Thu Dec 10 10:27:21 2015]
r3c6cn04.hopper.antwerpen.vsc Finished
checkpoint number -1.
[Thu Dec 10 10:47:21 2015]
r3c6cn04.hopper.antwerpen.vsc Started
checkpoint number 0 ...

Not finished?

Error file

20

...
forrtl: severe (174): SIGSEGV, segmentation fault occurred
...
[proxy:0:1@r4c3cn03.hopper.antwerpen.vsc]
HYDT_ckpoint_blcr_checkpoint
(../../tools/ckpoint/blcr/ckpoint_blcr.c:321):
cr_poll_checkpoint failed: Disk quota exceeded
[proxy:0:1@r4c3cn03.hopper.antwerpen.vsc] ckpoint_thread
(../../tools/ckpoint/ckpoint.c:620): blcr checkpoint returned
error
[proxy:0:1@r4c3cn03.hopper.antwerpen.vsc] H
YDT_ckpoint_finalize (../../tools/ckpoint/ckpoint.c:945): Error
in checkpoint thread 0x7
=>> PBS: job killed: walltime 3623 exceeded limit 3600
...

#!/bin/bash
#PBS -l nodes=4:ppn=20
#PBS -l walltime=01:00:00 #it will run out of walltime
...
mpirun –verbose

-restart
-ckpoint on
-ckpoint-logfile ./ckpt.$PBS_JOBID.log
-ckpoint-prefix ./ckpt
-ckpoint-interval 1200
vasp-eps2

• PBS:	job	killed:	walltime 3635	exceeded	limit	3600

• Restart	again	...

Let’s restart...

21

• Distributed multi-threading checkpointing
• Black box as intel mpirun, but program interrupts

not limited to global MPI communication routines
• Promising – tests ongoing
• Not available as module yet, but installation is

simple
• Requires template script
• https://github.com/dmtcp
• dmtcp/plugin/batch-queue/job_examples/torque_launch.job
• dmtcp/plugin/batch-queue/job_examples/torque_rstr.job

dmtcp

22

#!/bin/bash
Put your PBS options here
#PBS -N dmtcp_example
#PBS -l nodes=2:ppn=2
...
quite a bit of lines provided by dmtcp
...

start_coordinator --interval 60

restart=0 # or 1 if you want to restart
if [$restart -eq 0]; then

dmtcp_launch --rm --interval 60 ../t1-test1/test1
else

./dmtcp_restart_script.sh -h $DMTCP_COORD_HOST -p $DMTCP_COORD_PORT
fi

dmtcp example

23

Checkpoint
every	60s

===== start of prologue =====
Date : Thu Dec 10 13:15:55 CET 2015
Job ID : 139941
Job Name : pbs-dmtpc-t1b.sh
User ID : vsc20170
Group ID : vsc20170
Queue Name : q1h
Resource List : neednodes=1:ppn=1,nodes=1:ppn=1,walltime=00:05:00
===== end of prologue =======

PBS_JOBID=139941.mn.hopper.antwerpen.vsc
PBS_NODEFILE=/opt/moab/spool/torque/aux//139941.mn.hopper.antwerpen.vsc
r3c6cn04.hopper.antwerpen.vsc
PBS_O_WORKDIR=/scratch/antwerpen/201/vsc20170/checkpointing/dmtcp/t1b
which dmtcp_launch => /user/antwerpen/201/vsc20170/bin/dmtcp_launch

processes : 1
m : 10
std::numeric_limits<long int >::max() : 9223372036854775807
std::numeric_limits<long double>::max() : 1.18973e+4932

===== start of epilogue =====
...

Run: pbs-dmtpc-t1b.sh.o139941

24

[40000] NOTE at socketconnlist.cpp:178 in scanForPreExisting; REASON='found pre-existing
socket... will not be restored'

fd = 11
device = pipe:[1906658]

[40000] WARNING at socketconnection.cpp:192 in TcpConnection; REASON='JWARNING((domain ==
AF_INET || domain == AF_UNIX || domain == AF_INET6) && (type & 077) == SOCK_STREAM)
failed'

domain = 0
type = 0
protocol = 0

[40000] NOTE at socketconnlist.cpp:178 in scanForPreExisting; REASON='found pre-existing
socket... will not be restored'

fd = 16
device = pipe:[1906660]

[40000] WARNING at socketconnection.cpp:192 in TcpConnection; REASON='JWARNING((domain ==
AF_INET || domain == AF_UNIX || domain == AF_INET6) && (type & 077) == SOCK_STREAM)
failed'

domain = 0
type = 0
protocol = 0

=>> PBS: job killed: walltime 320 exceeded limit 300

pbs-dmtpc-t1b.sh.e139941

25

...
===== end of prologue =======

PBS_JOBID=139941.mn.hopper.antwerpen.vsc
PBS_NODEFILE=/opt/moab/spool/torque/aux//139941.mn.hopper.antwerpen.vsc
r3c6cn04.hopper.antwerpen.vsc
PBS_O_WORKDIR=/scratch/antwerpen/201/vsc20170/checkpointing/dmtcp/t1b
which dmtcp_launch => /user/antwerpen/201/vsc20170/bin/dmtcp_launch

processes : 1
m : 10
std::numeric_limits<long int >::max() : 9223372036854775807
std::numeric_limits<long double>::max() : 1.18973e+4932
lhit0 : 7854002172

Number of Procs used: 1
Number of Points used: 10000000000*1
hit: 7854002172
Estimate of Pi: 3.1416008688

Error of Pi: 8.21521020676194e-06

===== start of epilogue =====
...

Restart: pbs-dmtpc-t1b.sh.o139957

26

[40000] NOTE at socketconnlist.cpp:178 in scanForPreExisting; REASON='found pre-existing
socket... will not be restored'

fd = 11
device = pipe:[1906658]

[40000] WARNING at socketconnection.cpp:192 in TcpConnection; REASON='JWARNING((domain ==
AF_INET || domain == AF_UNIX || domain == AF_INET6) && (type & 077) == SOCK_STREAM)
failed'

domain = 0
type = 0
protocol = 0

[40000] NOTE at socketconnlist.cpp:178 in scanForPreExisting; REASON='found pre-existing
socket... will not be restored'

fd = 16
device = pipe:[1906660]

[40000] WARNING at socketconnection.cpp:192 in TcpConnection; REASON='JWARNING((domain ==
AF_INET || domain == AF_UNIX || domain == AF_INET6) && (type & 077) == SOCK_STREAM)
failed'

domain = 0
type = 0
protocol = 0

pbs-dmtpc-t1b.sh.e139957

27

Checkpoint to
• Recover from problematic situations (hopefully)

without completely re-running (big) jobs
• Save resources
• Save power
• Save fair share
• Save time to solution

Round up

28

• If your application has built-in restart capabilities,
use them (always)
• Advantages:
• You can continue a job with different parameters
• Checkpointing is cheap in terms of runtime and storage

• Carefully read the manual, and check the application forum
for possible issues

• Perform some representative tests on restarting before you
run a big job

• If you have to restart, first make a backup of the checkpoint
files

• Ensure that you have sufficient quota to store at least two
checkpoints
• (or store them in a place where there are no quota, e.g. /tmp,

but then you are responsible for picking up the checkpoints
yourself)

Best practices 1

29

• If your application has no built-in restart
capabilities

• Single node -> csub
• Multi-node -> intel mpirun or dmtcp
• Use a version that is built with a recent intel toolchain

• Perform some representative tests on restarting
before you run a big job

• If you have to restart, first make a backup of the
checkpoint files

• Ensure that you have sufficient quota to store at
least two checkpoints
• Files are large : Gb/node
• You run out of disk space

Best practices 2

30

• We hope to gain experience
• Try it out and tell us about your successes and failures

• dmtcp tests ongoing

To be continued

31

