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Why parallelize? 

1. Reduce time to solution 
•  Machines have limited peak performance 

2. Solve bigger problems in the same time 
•  Machines have limited amount of memory 

3. Produce more accurate solutions 
•  typically implies 

•  More data, e.g. more elements, basis functions, atoms, …  
•  More computations, e.g. more detailed physics, … 
•  Both 

4. … 
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Why parallelize? 

•  Computers get faster anyway, no? 
•  Moore’s law still holds 

 # of transistors on a chip doubles every 18 months 

•  Used to be equivalent to  
 program execution speed doubles every 18 months 

•  Not any more … 
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•  Clock frequency not going up anymore  

•  Peak performance still 
increases because it is 
multiplied by 

  number_of_cores  
             x threads_per_core  
        x vector_width 

Why parallelize? 

CPU GHz sockets 
x cores 

threads  
per core 

vector 
width 

GHz x f 
(Gflops) GB/s Flops/GB 

SP 

Harpertown 2.5 4 1 4/2 40/20 4 10 

Westmere 2.26 2x6 2 4/2 217/109 8 27.8 

Xeon Phi 1.24 61 4 16/8 4841/2420 160 30 

Ivy Bridge 2.8 2x10 2 8/4 896/484 80 11.2 

× × × = 
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Why parallelize? 

•  Speed of memory increases much slower than peak 
performance 

•  5 years ago most applications were compute bound 
•  Speed  ~ peak performance 

•  Today most applications are memory bound 
•  Speed ~ peak bandwidth 
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Why parallelize? 

•  Conclusion: 
On future CPUs the speed of a serial code will certainly 
not increase in pace with Moore’s law 

•  Unless you parallelize 

4. Keep your code’s performance in pace with Moore’s 
law and stay competetive 
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Overview  

•  Why parallelize?  

•  When parallelize?  

•  Know your goal and minimize coding effort 
•  Common approaches towards parallelization 
•  What to parallelize? 
•  Case study 
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When parallelize? 

•  When you hit the wall(s) … 
•  Program takes too long 
•  Single node memory too small 
•  Outperformed by competitor 

•  You need to parallelize … 

Serial optimization 
Shared memory machine 
 

Are you sure? Consider  
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When parallelize? 
what to do first … 

•  Optimize serial code – often significant speedup 
possible  
•  Use appropriate data layouts 
•  Use appropriate algorithms 
•  Use good tools 
•  Intel compiler suite generally better than gcc 
•  Use HPC libraries 
•  Prefer to extend existing codes rather reinventing the wheel  

•  Look for well documented code 
•  User forum traffic 
•  Download counts  
•  Citations  

•  Compile for CPU you want to run on: -xhost -O3 [-fast] 
•  Understand what influences the performance of your code 
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Serial optimization 
what influences serial performance? 

•  Data traffic 
•  Need ~200 cycles to move data from main memory to CPU 
•  Core can do 4x200 single precision operations in that time 
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The cost of memory 

•  UMA 
•  Uniform memory access  
•  Is gone 

•  ccNUMA 
•  Cache coherent non-uniform memory access 
•  Multiple copies of data  
•  Mechanisms to maintain coherency 
•  The farther away data is from processor, the longer it takes to 

fetch it 
•  Complicating factor 
•  It is here to stay … 
•  Overlap computation and communication 

 = form of parallelization 
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Serial optimization 
what influences serial performance? 

•  Vectorization = parallelization in a single thread 
•  SIMD, FMA 
•  Apply instruction to vector register instead of scalar register 
•  Register width  

•  128 bit =  4 SP = 2 DP !Harpertown, Westmere  (Turing) "
•  256 bit =  8 SP = 4 DP !Ivy Bridge !  (Hopper) "
•  512 bit = 16 SP = 8 DP !Xeon Phi ! !  (Vic3) "

•  Pipelines  
•  LI0 DI0 XI0 LI1 DI1 XI1 LI2  DI2  XI2  … "
•  5 stage pipeline "

LI0 DI0 XI0 LI5 DI5 XI5 LI10 DI10 XI10 … "
    LI1 DI1 XI1 LI6 DI6 XI6  LI10 DI10 …"
        LI2 DI2 XI2 LI7 DI7  XI7  LI10 …"
            LI3 DI3 XI3 LI8  DI8  XI8  … "
               LI4 DI4 XI4  LI9  DI9  …"

•  Pipelines can be broken by  
•  load/store from/to main memory 
•  conditional branches 
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When to parallelize? 
and what to do first … 

•  Criteria for efficient loops – 1 

Prefer loops with high computational intensity 
•  Number of Flops per memory access 
•  The higher the better 
•  SIMD very powerful, won’t help if  

memory bound 
•  Code balance = (Computational intensity)-1 

•  Don’t cheat, measure useful work 
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Roofline model 

Computational intensity (I) [F/B] 

Pe
rf

or
m

an
ce

 [
F/

s]
 

machine peak performance 

Bandwidth limited <-|-> peak performance limited  

1.  Determine roofline of your 
machine (measure peak 
performance and bandwidth) 

2.  Measure computational 
intensity and performance of 
micro-benchmark and plot 

3.  Compare with roofline and try 
to understand 
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Roofline model 

Computational intensity (I) [F/B] 

Pe
rf

or
m

an
ce

 [
F/

s]
 Bandwidth limited <-|-> peak performance limited  

•  Bandwidth limited  
•  Close to roofline 
•  Improve computational intensity  

Measure the computational intensity 
Iµ and the performance Pµ for a 
micro-benchmark Iµ 

Pµ 

-> (Iµ,Pµ) 
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Roofline model 

Computational intensity (I) [F/B] 

Pe
rf

or
m

an
ce

 [
F/

s]
 Bandwidth limited <-|-> peak performance limited  

•  Peak performance limited  
•  below roofline 
•  Improve memory access pattern, 

or do more with your data 

Iµ 

Pµ 
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•  peak performance/bandwidth  
 = FLOPs per byte you need to keep CPU busy 

•  (for loops that read from main memory) 

CPU GHz sockets 
x cores 

threads  
per core 

vector 
width 

GHz x f 
(Gflops) GB/s FLOPs/B 

Harpertown 2.5 4 1 4/2 40 4 10 

Westmere 2.26 2x6 2 4/2 217 8 27.8 

Xeon Phi 1.24 61 4 16/8 4841 160 30 

Ivy Bridge 2.8 2x10 2 8/4 896 80 11.2 
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When to parallelize? 
and what to do first … 

•  Criteria for efficient loops – 2 

Prefer loops with unit stride  
float a[N];!
for(int i=0; i<N; i+=stride) { a[i] = … }!

•  every load/store loads/stores an entire cache line 
•  typically 64 Bytes = 16 SP = 8 DP 

•  Avoid filling the cache with data you do not need 
•  Make sure you use the data that are loaded in the cache!

Prefer data structures enabling unit stride  
•  Array of structure (AoS)     vs     structure of arrays (SoA) 

struct Particle // AoS !struct Particles // SoA!
{ double x,y,z,vx,vz,vy,m; }; !{ double x[N],y[N],…; }; !
Particle particles[N]; !Particles particles;!

!// not efficient since !// efficient, also for SIMD!
// non-unit stride for loops !// but mind indirect data access!!
// which do not use all !!
// properties in the struct.!
// Also bad for SIMD vectorization!
!
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The cost of memory 

•  Criteria for efficient loops – 3 

Prefer predictable loops 
•  Latency can be hidden by prefetching (compiler does this) 
Avoid unpredictable loops 
•  Conditional branches 
•  Break pipelines 

•  Indirect addressing/Pointer chasing 
•  Bad memory access patterns, many cache misses 

•  Compiler has no clue … 
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When to parallelize? 
Or what to do first … 

•  Cache size = 32 Kb = 4K doubles 
•  Cache line size is 64 bytes or 4 DP or 8 SP 
•  Every read will transfer 64 bytes to L1 
•  Main memory->L1  200 cycles 
•  L3->L1    52 cycles 

•  Cache misses are expensive:  
 you easily miss hundreds of compute cycles 

•  Exploit spatial and temporal data locality 
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When to parallelize? 
Or what to do first … 

 
•  Spatial data locality = 

make sure you use all data in a cache line 
don’t jump around in main memory 
> Sort data approximately in the order that you 
   need them in loops 

•  Temporal data locality = 
once your data is in L1 cache, use it as much as 
possible 
> Apply tiling 
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Tiling 

// inefficient!
// except small problems!
!
For all items!
!Do this!

For all items!
!Do that!

For all items!
!Do something else!

!
!
// data transferred 3x!

// efficient !
// chunk = collection of items!
//       that fits in L1 cache!
For all chunks!
!For all items in chunk!
! !Do this!
!For all items in chunk!
! !Do that!
!For all items in chunk!
! !Do something else!

!
// data transferred once!
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When to parallelize? 
and what to do first … 

•  Criteria for efficient loops – 4 

Prefer long loops  
•  Amortize startup and cleanup cost of pipelines and loop 

overhead 
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Criteria for efficient loops – summary  

Prefer loops which 
 have high computational intensity 
 have unit stride 
 are predictable 
 are long 
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The numbers tell the tale 

•  Know where to optimize 
•  Think! – may be sufficient for small program 
•  Otherwise, measure performance  

using profiling tools 
•  gprof 
•  Llkwid-perfctr 
•  PerfExpert  
•  Intel Vtune 
•  Allinea Map 

•  Hardware counters 
•  # instructions 
•  # cache misses 
•  # memory read/writes 
•  # TLB misses 
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Overview  

•  Why parallelize?  
•  When to parallelize?  

•  Know your goal and minimize coding effort 

•  Common approaches towards parallelization 
•  What to parallelize? 
•  Case study 
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Know your goal 
Minimize coding effort 

•  How much memory do you need? 
•  Required time to solution? 
•  May include development time 

•  How many cpu years will your code run? 
•  How much time can you afford to spend on coding? 
•  Is anything available in open source community? 
•  A few days of googling around may save you months of 

development 
•  Your programming skills will improve more by using someone 

else’s good code than by trying to reinvent the wheel  
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Overview  

•  Why parallelize? 
•  When to parallelize?  
•  Know your goal and minimize coding effort 

•  Interludium 

•  Common approaches towards parallelization 
•  What to parallelize? 
•  Case study 
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How (not) to program … 

•  Lennard-Jones potential 
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How (not) to program … 

double VLJ0( double r ) {!
    return 1./pow(r,12) - 1./pow(r,6); !!
} !// 18.0 x slower!

double VLJ1( double r ) {!
    return std::pow(r,-12) - std::pow(r,-6);!
} !// 14.9 x slower!
double VLJ2( double r ) {!
    double tmp = std::pow(r,-6);!
    return tmp*(tmp-1.0);!

} !// 7.8 x slower!
double VLJ3( double r ) {!
    double tmp = 1.0/(r*r*r*r*r*r);!
    return tmp*(tmp-1.0);!
} !// 1.01 x slower!
double VLJ( Real_t r ) {!

    double rr = 1./r;!
    rr *= rr;!
    double rr6 = rr*rr*rr;!
    return rr6*(rr6-1);!
} !// 1 x slower!
!
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Overview  

•  Why parallelize? 
•  When to parallelize?  
•  Know your goal and minimize coding effort 

•  Common approaches towards parallelization 
 
•  What to parallelize? 
•  Case study 
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Common parallelization approaches 

Shared memory machine 
•  One global address space 

(not necessarily uniform) 
•  No (explicit) communication 

Distributed memory machine 
•  No global address space  
•  One process per thread 
•  Each process has its own 

address space 
•  Communication between 

processes to share data 

U U U
Hybrid machine 
•  Each process manages several threads 
•  One global address space per process 
•  One process per socket, or per pair of SMT threads, … 
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Common parallelization approaches 

•  Shared memory 
•  OpenMP (C/C++/Fortran) 
•  Intel TBB (C++) 
•  Intel cilk++ (C++) 
•  (Raw threads) 
•  (MPI) (C/C++/Fortran) 
•  Charm++ parallel objects 

(C++) 
•  Global Array toolkit  

(C/C++) 

•  Distributed memory 
•  MPI 
•  Charm++ parallel objects 
•  Global array toolkit 

•  Hybrid  
•  MPI between nodes,  

shared memory approach in 
each process 
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Overview  

•  Why parallelize? Computers get faster anyway, No? 
•  When to parallelize? Or what to do first 
•  Know your goal and minimize coding effort 
•  Common approaches towards parallelization 

•  What to parallelize? 

•  Case study 
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What to parallelize? 

•  Communication is overhead and slow  
•  Bandwidth and latency order of magnitude worse than main 

memory access 
•  Try overlapping communication and computation 

•  Generally, prefer parallelizing 
•  Large loops with high computational intensity 
•  Tasks with little communication 
•  Big chunks of code over small ones (coarse grained) 
•  Chunks of a fixed load over variable loads 
•  Otherwise, schedule largest tasks first 
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overview 

•  Why parallelize?  
•  When to parallelize?  
•  Know your goal and minimize coding effort 
•  Common approaches towards parallelization 
•  What to parallelize? 

 

•  Case study – Molecular Dynamics  
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Test case 

•  Small molecular dynamics code 
•  Kindly provided by Jesus Eduardo Galvan Moya from 

Physics Department – Condensed Matter theory 
•  Serves many didactical (HPC) purposes 
•  Simple code, not to big, easy to understand, …  
•  Full of issues you should learn to pay attention to 
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Case study 

•  Ground state energy calculation of atomistic system 
•  0K, no velocities 
•  10-150 atoms 
•  Pairwise interaction potential, brute force (no cut off) 
•  50*49/2 = 1125 pair potential evaluations 
•  150*149/2 = 11175 pair potential evaluations 

•  1000 runs of 200000 atom moves (Monte Carlo 
samples) 

•  Followed by quasi-Newton method to improve the MC 
minimum 

•  Fortran90  
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Case study 

do i_run=1,1000  local minimum loop  } 
do i_mcs=1,200000  Monte Carlo loop }  } 

Etot=0    }  } 
do i=1,n  energy loop  }  }  }   

do j=i+1,n   }  }  } 
 Etot = Etot + f(rij)                    }  }  } 

end do   }  }  } 
end do   }  }  } 
keep lowest energy configuration    }  } 

end do     }  } 
improve local minimum with quasi-newton    } 

end do       } 
keep lowest energy configuration = global minimum (hopefully) 
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Case study 
memory footprint 

•  Problem size  
•  3 position coordinates * nAtoms * 8 bytes/coordinate 
•  50 atoms  -> 1200 bytes ~ 1.2 Kb 
•  150 atoms -> 3600 bytes ~ 3.6 Kb 

•  Turing harpertown nodes – 2 quad cores 
•  2x4=8 threads  
•  L1 Cache size = 32 Kb per core 

•  Turing Westmere nodes – 2 six cores with SMT 
•  2x6x2=24 threads 
•  L1 Cache size = 32 Kb per core 

•  Fits in L1 cache easily, no need for tiling 
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Case study - optimization 

•  Which parts in the code need optimization? 
•  Energy loop (pairs of atoms) 
•  Small part of code 
•  Executed most often 1125x200000x1000 
•  Definitely needs optimization  (“What to do first”)  

•  Monte Carlo loop 
•  NR part represents small fraction of loop, little to be gained 

•  Global minimum loop 
•  Mainly just a loop 
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Case study – optimization   
Energy loop 

 do i=1,N!
   ri(1) = x(i)!
   ri(2) = y(i)!
   ri(3) = z(i)!
   do j=i+1,N!
      rj(1) = x(j)!
      rj(2) = y(j)!
      rj(3) = z(j)!
      Etotal = Etotal + Energy(ri,rj)!
    end do!
end do!
!



44 

Case study – optimization   
Energy loop 

function Energy(ra,rb)!
!...!

r=sqrt((rb(1)-ra(1))**2+(rb(2)-ra(2))**2+(rb(3)-ra(3))**2)!
Energy = intpot_fitting(r)!

return!
end!
!
function intpot_fitting(r)!
!...!

intpot_fitting = Acoeff*exp(-alpha*r)/r**npow  
- Bcoeff*exp(-beta*(r-catt))/((r-catt)**nattractive+datt)  
- 0*Ccoeff/r!

return!
end!

!
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Case study – optimization   
Energy loop 

function Energy(ra,rb)!
!...!

r=sqrt((rb(1)-ra(1))**2+(rb(2)-ra(2))**2+(rb(3)-ra(3))**2)!
Energy = intpot_fitting(r)!

return!
end!
!
function intpot_fitting(r)!
!...!

intpot_fitting = Acoeff*exp(-alpha*r)/r**npow  
- Bcoeff*exp(-beta*(r-catt))/((r-catt)**nattractive+datt)  
- 0*Ccoeff/r!

Return !
end 

 +,-,* are cheap  1 cycle 
 /, exp(.), sqrt(.) are expensive  ~20 cycles 

 pow(.,.) is very expensive  ~100 cycles 

• Both functions have high 
computational intensity 
•  Loops will be compute 
bound 
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Case study – optimization   
Energy loop 

•  50 atoms 
•  Fortran version 150 µs  (auto-vectorization turned off)   
•  C/C++ version 144 µs 

•  I am not a Fortran specialist 
•  Tried to optimize a C/C++ version first 
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Case study – optimization   
Energy loop 

•  Energy loop contains two nested function calls 
•  Prevents C++ from vectorizing the inner loop 
•  Remove call to Energy, compute interatomic distance 

rij in loop body and call intpot_fitting 
•  144->96 µs (now vectorized) 
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Case study – optimization   
Energy loop 

•  Intpot_fitting contains division by power: 
Acoeff*exp(-alpha*r)/r**npow 

•  Equivalent to  
Acoeff*exp(-alpha*r)*r**(-npow) 

•  But saves a division ~20 cycles 
•  144->96->93 µs 
•  Only small gain because Intpot_fitting is expensive 

anyway (5 intrinsic function calls) 
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Case study – optimization   
Energy loop 

•  Remove the call to intpot_fitting and compute in the 
body of the loop 

•  144->96->93->93 µs 
•  Compiler good at inlining 1 function call, not 2. 
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Case study 
Energy loop 

•  Inner loop runs over [i+1,N[  
•  So its data is not always well aligned 
•  Can slow down vectorization 
•  Let inner loop run over [0,i[ 
•  144->96->93->93->93 µs 
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Case study – optimization   
Energy loop 

•  N-1 inner loops, not very long 
•  Split loop 
•  Compute and store interatomic distance in array of length 

N*(N-1)/2 = 1225 
•  loop over atomic distance array and compute intpot_fitting in one 

long array instead of many short ones 
•  144->96->93->93->93->86µs 

•  Criteria for efficient loops – 4 – Prefer long loops  
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Case study – optimization   
Energy loop 

for( int i=1, ij=0; i<N; ++i ) {// may safely skip i=1!
   Real ri[3] = { x[i],y[i],z[i] };!
   for( int j=0; j<i; ++j, ++ij ) {!
      r[ij] = sqrt( sq(x[j]-ri[0])!
                  + sq(y[j]-ri[1])!
                  + sq(z[j]-ri[2]) );!
   }!
}!
Etotal = 0;!
for( int ij=0; ij<N*(N-1)/2; ++ij ) {!
   Etotal += Acoeff*exp(-alpha*r[ij])/pow(r[ij],npow)!
           - Bcoeff*exp(-beta*(r[ij]-catt))/  
                (pow(r[ij]-catt,nattractive)+datt)!
           - 0*Ccoeff/r[ij];!
}!

Keep sqrt for 
computational 

intensity 
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Case study 
Energy loop 

•  Applying the same techniques in fortran 
•  Auto-vectorization 
•  150->95 µs 
•  Lower triangle and remove a division 
•  150->95->88 µs 
•  Loop splitting 
•  150->95->88->85 µs 
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Case study – optimization   
Energy loop 

•  Same result as C++ -> confidence 
•  Analysis 
•  Programming language used 

•  Common misconception  
•  Fortran is efficient 
•  C++ is not efficient 

•  Rather :  
•  Computational efficiency necessitates a particular 

programming style  
(stay away from high level C++ features)  
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Are we satisfied … 

•  Speedup 95->85 µs = 1.12 L 
•  150 atoms (x3) -> 747µs (x8.7 ~ x32) 
•  Energy loop is O(N2) 
•  Atoms x10 -> cputime x100 L 
•  Alternatives? 
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Case study – optimization   
Energy loop 

•  Understand your code! 
•  This Monte Carlo sampling moves only one atom at a 

time 
•  For N atoms only N-1 interatomic distances and 

interaction energies change instead of all N(N-1)/2 
•  N(N-1)/2 ~ N2/2 

•  Exploit this! 
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rij 0 1 2 3 4 5 6 
0 
1 0 
2 1 2 
3 3 4 5 
4 6 7 8 9 
5 10 11 12 13 14 
6 15 16 17 18 19 20 

Store rij 

•  Linear array containing 
r10, r20, r21, r30, r31, r32, r40, r41, r42, r43, …   
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Store Eij and row sums 

Eij 0 1 2 3 4 5 6 Erow 

0 
1 0 E0 
2 1 2 E1+E2 
3 3 4 5 E3+E4+E5 
4 6 7 8 9 E6+…+E9 
5 10 11 12 13 14 E10+…+E14 

6 15 16 17 18 19 20 E15+…+E20 
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Move 1 atom 

Eij 0 1 2 3 4 5 6 Erow 
0 
1 0 E0 
2 1 2 E1+E2 
3 3 4 5 E3+E4+E5 
4 6 7 8 9 E6+…+E9 
5 10 11 12 13 14 E10+…+E14 

6 15 16 17 18 19 20 E15+…+E20 

Atom 4 is moved, 
row 4 and column 4 
change 
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New algorithm 

i\j 0 1 2 3 4 5 6 Erow 

0 
1 0 E0 
2 1 2 E1+E2 
3 3 4 5 E3+E4+E5 
4 6 7 8 9 E6+…+E9 
5 10 11 12 13 14 E10+…+E14-E14+E’14 

6 15 16 17 18 19 20 E15+…+E20-E19+E’19 

•  More code, loops harder to optimize for compiler (shorter loops, 
varying stride, …) 
•  E.g. recompute loops not vectorized yet … 
•  Little hope for auto-vectorization 
•  SIMD Vectorization certainly possible using Vectorization library (e.g. Vc 

or Boost.simd in NT2). Expect speedup x2 on Turing, x4 on Hopper 
•  Nontrivial code requires documentation 



61 

What did we gain? 

nAtoms 
50 
150  (x3) 
500  (x10) 

O(N2) 
86 
747     (x9) 
8616  (x100) 

O(N) 
5.7 
17.3  (x3) 
57     (x10) 

Speedup 
15.1 
43.2 
151.2 

•  Always look for O(N) algorithms if problem size is 
likely to grow in the future 

•  Always start with the simplest algorithm so you 
have a reference for correctness testing 
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Profiling with PerfExpert 

•  PerfExpert is a tool that combines a simple user 
interface with a sophisticated analysis engine to: 
•  Detect and diagnose the causes for core, socket, and 

node-level performance issues. 
•  Provide a performance analysis report and suggestions 

for remediation. 
•  Apply pattern-based software transformations to 

enhance performance. 
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Profiling with PerfExpert 

PerfExpert output of inner loop above: 
 
Loop in function __svml_pow2_h9 in ~unknown-file~:0 (68.58% of the total runtime) 
=============================================================================== 
ratio to total instrns    %  0..........25..........50..........75..........100 
 - floating point      100.0 ************************************************** 
 - data accesses        25.4 ************* 
* GFLOPS (% max)        27.3 ************** 
 - packed               15.2 ******** 
 - scalar               12.1 ****** 
------------------------------------------------------------------------------- 
performance assessment  LCPI good.......okay........fair........poor........bad 
* overall               0.58 >>>>>>>>>>>> 
* data accesses         0.91 >>>>>>>>>>>>>>>>>> 
 - L1d hits             0.89 >>>>>>>>>>>>>>>>>> 
 - L2d hits             0.02  
 - L3d hits             0.00  
 - LLC misses           0.00  
… 

The program spends 69% 
evaluating std::pow(.,.) 
(Also 18% on std::exp(.)) 
These are called by f(rij). 

The program is compute bound 
(as expected). 

Roughly half of the instructions 
is still scalar, although pow and 
exp are vectorized (svml prefix). 

Data fits in L1d cache  
(as expected). 

The overall performance is 
considered okay 

Still room for improvement? 
•  Interaction potential very expensive 

•  2 pow, 2 exp, 1 sqrt, 3 div 
•  Still high fraction of scalar code 
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Case study - Parallelization 

•  Which part in the code can be parallelized? 
•  Energy loop (pairs of atoms) 
•  Small part of code 
•  Executed most often 1125x1000x200000 

•  MC sampling loop 
•  Local minimum loop 

•  Each can be parallelized 
•  Which is best? 
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Case study 

•  Approach -> OpenMP  
•  Simple from programmer’s point of view 

•  When using OpenMP always go for intel compiler suite 
overhead start/stop/synchronization is much larger for 
gcc OpenMP than for intel OpenMP  
•  Intel ~ 100s of cycles 
•  Gcc  ~ 1000s of cycles 

•  There are very good alternatives to OpenMP  
•  Intel Threading Building Blocks (TBB) 
•  Intel Cilk++ 
•  (but not for Fortran) 

•  Disadvantage = shared memory 
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Case study 
// energy loop 

•  Energy loop relatively short (trip count 1225) and 
fine grained 
•  Overhead of starting and stopping OpenMP threads will kill 

us 
•  O(N) algorithm even worse 
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Case study 
// MC loop 

•  MC sampling loop much longer (trip count 200.000) 
and coarse-grained 
•  Using OpenMP we should be able to run 24 threads  
•  good code balance -> threads can be kept busy 
•  small memory footprint -> everything can stay in cache 
•  Ideal situation 

•  Each thread would do 200.000/24 atom moves (and Etot 
computations) 

•  Sufficient to amortize overhead of starting and stopping 
OpenMP threads 

•  This leaves quasi-Newton minimization serial 
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Case study 
// global minimum loop 

•  Global minimum loop small trip count (1000) but very 
coarse grained  

•  Could be parallelized with OpenMP  
•  Limited to single node = 24 OpenMP threads 
•  time to solution is 1000/24=42 x serial execution time 
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Case study 
// global minimum loop 

•  Think! 
•  Global minimum loop iterations are completely 

independent – no communication between iterations 
•  Apply process parallelism 
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Case study 
process parallelism 

•  Strip outer loop from program 
•  new program computes single local minimum 

•  Run this program 1000 times  
•  Worker framework – can be done with one job 
•  Westmere node can run 24 instances of program 

simultaneously 
•  Use a script (python, bash) to process the output of the 

jobs to pick the global minimum  
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Case study 
SMT 

•  Westmere nodes can run 2 threads per core (SMT) 
•  SMT = simultaneous multithreading 
•  While thread 1 is not using some functional unit, that 

functional unit can be used by thread 2 
•  Thread 2 “feeds on leftovers of thread 1” 
•  Overlap memory traffic and instruction execution 
•  Thread scheduling done by hardware 
•  Speedup at most 2, usually less 
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Case study 
SMT 

•  Westmere nodes can run 2 threads per core (SMT) 
•  Use worker framework 
•  12 threads (no SMT)  68.5 cpu seconds/thread 
•  24 threads (SMT) 96.8 cpu seconds/thread 
•  Slowdown of 1.4 for 2x instances 
•  Throughput x 1.42  

•  Time to solution for 1000 runs  
•  Using 1000/24 = 42 nodes ~ 1.42 x t_serial_execution 
•  Using 1000/12 = 84 nodes ~ 1.00 x t_serial_execution  
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Case study 
process parallelism 

•  Program parallelization only necessary if the time to 
solution must be less than t_serial_execution 

•  This comes at a cost 
•  More cputime because of communication 
•  Development time  

A tool that combines a simple user interface with a sophisticated analysis engine to: • Detect and diagnose the causes for core, socket, and node-level performance issues. •  Provide a performance analysis report and suggestions for remediation. • Apply pattern-based software transformations to enhance performance. 

PerfExpert output of inner loop above: 
 
Loop in function __svml_pow2_h9 in ~unknown-file~:0 (68.58% of the total runtime) 
=============================================================================== 
ratio to total instrns    %  0..........25..........50..........75..........100 
 - floating point      100.0 ************************************************** 
 - data accesses        25.4 ************* 
* GFLOPS (% max)        27.3 ************** 
 - packed               15.2 ******** 
 - scalar               12.1 ****** 
------------------------------------------------------------------------------- 
performance assessment  LCPI good.......okay........fair........poor........bad 
* overall               0.58 >>>>>>>>>>>> 
* data accesses         0.91 >>>>>>>>>>>>>>>>>> 
 - L1d hits             0.89 >>>>>>>>>>>>>>>>>> 
 - L2d hits             0.02  
 - L3d hits             0.00  
 - LLC misses           0.00  

… 

The program spends 69% evaluating std::pow(.,.). (Also 18% 
on std::exp(.)). These are called by f(rij). 

The program is compute bound (as expected). 

Roughly half of the instructions is still scalar, although pow 
and exp are vectorized (svml prefix). 

Data fits in L1d cache (as expected). 

Overall performance is considered okay . 

Possible further improvements? (ongoing work) • Avoid std::pow (spline interpolation?) •  Increase vectorization ?  
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Overview 

•  Why parallelize?  
•  When parallelize?  
•  Know your goal and minimize coding effort 
•  Common approaches towards parallelization 
•  What to parallelize? 
•  Case study – Molecular Dynamics 

•  Final remarks 
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Final remarks 

•  Reasons to parallelize 
•  But, before you parallelize, 
•  But, before you optimize, 
•  Before you write code,  
•  In any case,  

engelbert.tijskens@uantwerpen.be 

•  Optimize!  
•  Profile your code 
•  Consider reusing OS code 
•  Talk to us 
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Test  

•  If you would have to reduce time to solution, which 
loop would you parallelize? 
•  Energy loop 
•  MC sampling loop 
•  Local minimum loop Loop 

•  Which approach would you use, ant why 
•  OpenMP 
•  MPI 


